浙江省中考数学总复习专题提升十二关于pisa测试题的问题试题
展开
这是一份浙江省中考数学总复习专题提升十二关于pisa测试题的问题试题,共6页。
母题呈现
(2016·绍兴)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )
A.84 B.336 C.510 D.1326
对点训练
1.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )
第1题图
A.甲种方案所用铁丝最长
B.乙种方案所用铁丝最长
C.丙种方案所用铁丝最长
D.三种方案所用铁丝一样长
2.(2017·绍兴)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是( )
第2题图
3.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水需2分钟;②洗菜需3分钟;③准备面条及佐料需2分钟;④用锅把水烧开需7分钟;⑤用烧开的水煮面条和菜需3分钟.以上各工序除④外,一次只能进行一道工序,小明要将面条煮好,最少用( )
A.14分钟 B.13分钟
C.12分钟 D.11分钟
4.△PQR是直角三角形,∠R是直角.RQ的长度比PR短,M是PQ的中点,N是QR的中点,S是三角形内部一点,MN的长度比MS长.则符合以上描述的三角形是( )
5.(2015·台州)某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人.”乙说:“两项都参加的人数小于5人.”对于甲、乙两人的说法,有下列四个命题,其中真命题的是( )
A.若甲对,则乙对 B.若乙对,则甲对
C.若乙错,则甲错 D.若甲错,则乙对
6.(2015·绍兴)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其他棒条压着时,就可以把它往上拿走.如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走( )
A.②号棒 B.⑦号棒
C.⑧号棒 D.⑩号棒
第6题图
7.(2015·台湾)已知A地在B地的西方,且有一以A、B两地为端点的东西向直线道路,其全长为400公里.今在此道路上距离A地12公里处设置第一个广告牌,之后每往东27公里就设置一个广告牌,如图所示.若某车从此道路上距离A地19公里处出发,往东直行320公里后才停止,则此车在停止前经过的最后一个广告牌距离A地多少公里?( )
第7题图
A.309 B.316 C.336 D.339
8.木匠制作一个如图的书架需要以下材料:4块长木板,6块短木板,12个短夹,2个长夹和14颗螺丝.现在木匠有26块长木板,33块短木板,200个短夹,20个长夹和510颗螺丝,则木匠可以做 个书架.
第8题图
9.(2017·永嘉模拟)魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为__________________.
第9题图
10.(2016·温州)七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是 cm.
第10题图
11.(2017·温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为____________________cm.
第11题图
12.(2017·宁波模拟)某餐厅中,一张桌子可坐6人,有以下两种摆放方式:
(1)当有n张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?
第12题图
参考答案
专题提升十二 关于pisa测试题的问题
【母题呈现】C
【对点训练】
1.D 2.B 3.C 4.D 5.B 6.D 7.C
8.5 9.6eq \r(10) 10.(32eq \r(2)+16) 11.(24-8eq \r(2))
12.(1)第一种中,只有一张桌子是6人,后边多一张桌子多4人.即有n张桌子时是6+4(n-1)=(4n+2)人.第二种中,有一张桌子是6人,后边多一张桌子多2人,即6+2(n-1)=(2n+4)人. (2)打算用第一种摆放方式来摆放餐桌.因为,当n=25时,4×25+2=102人>98人,当n=25时,2×25+4=54人<98人,所以,选用第一种摆放方式.
相关试卷
这是一份浙江省中考数学总复习专题提升十以直角三角形为背景的测量问题试题,共8页。试卷主要包含了3~5,1小时).≈1,7,eq \r≈1,∴∠CAO′=30°等内容,欢迎下载使用。
这是一份浙江省中考数学总复习专题提升五以特殊三角形为背景的探究性问题试题,共6页。试卷主要包含了感知等内容,欢迎下载使用。
这是一份浙江省中考数学总复习专题提升四以函数为背景的综合运用试题,共5页。