2023年山东省泰安市泰山实验中学初中学业水平数学模拟预测题(原卷版+解析版)
展开
这是一份2023年山东省泰安市泰山实验中学初中学业水平数学模拟预测题(原卷版+解析版),文件包含2023年山东省泰安市泰山实验中学初中学业水平数学模拟预测题原卷版docx、2023年山东省泰安市泰山实验中学初中学业水平数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
1.答题前请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答.
2.考试结束后,监考人员将本试卷和答题卡一并收回.
第I卷(选择题 共48分)
一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求.)
1. 下列各数,,,,,,中,无理数有( )
A. 2个B. 3个C. 4个D. 5个
2. 如图,是由若干个相同的小正方形搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方形的个数不可能是( )
A. 3B. 4C. 5D. 6
3. 下列计算中,结果正确的是( )
A. B.
C. D.
4. 1968年科学家发现世界上最小的物质是夸克,物质就是由这种极其小的物质而构成的,夸克有多小呢?它的大小是1介米,约为原子核的百万分之一.百万分之一用科学记数法表示为( )
A. 1×10-5B. 1×10-6C. 1×106D. 1×10-8
5. 如图,将一副三角尺按图中所示位置摆放,点在上,,,,,,则的度数是( )
A. B. C. D.
6. 甲乙两台机床同时生产同一种零件, 在某周的工作日内,两台机床每天生产次品的个数整理成甲、乙两组数据,如下表:关于以上数据,下列说法正确的是( )
A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数大于乙的平均数D. 甲的方差小于乙的方差
7. 如图,点,,是上的三点.若,,则的大小为( )
A. B. C. D.
8. 如果关于x的一元二次方程x2+2x+6-b=0有两个相等的实数根x1=x2=k,则直线y=kx+b必定经过的象限是( )
A. 一、二、三B. 一、二、四C. 二、三、四D. 一、三、四
9. 如图,AB是⊙O的弦,等边三角形OCD的边CD与⊙O相切于点P,连接OA,OB,OP,AD.若∠COD+∠AOB=180°, AB=6,则AD的长是( )
A. 6B. 3C. 2D.
10. 如图,胡同左右两侧是竖直墙,一架米长的梯子BC斜靠在右侧墙壁上,测得梯子与地面的夹角为45°,此时梯子顶端B恰巧与墙壁顶端重合.因梯子阻碍交通,故将梯子底端向右移动一段距离到达D处,此时测得梯子AD与地面的夹角为60°,则胡同左侧的通道拓宽了( )
A 米B. 3米C. 米D. 米
11. 如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、、AF,过A作AH⊥EF于点H. 若,那么下列结论:①平分;②FH=FD;③∠EAF=45°;④;⑤△CEF的周长为2.
其中正确结论的个数是
A 2B. 3C. 4D. 5
12. 如图,矩形ABCD的边,,点E在边上,且,F为边上的一个动点,连接,将线段绕点E顺时针旋转90°得到,连接,则的最小值为( )
A. 2B. 3C. D.
第II卷(非选择题 共102分)
二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在题中的横线上.)
13. 计算:=_______.
14. 我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹每人六竿多十四,每人八竿恰齐足”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知与多少人和竹竿每人6竿,多14竿;每人8竿,恰好用完”若设有牧童x人,根据题意,可列方程为__________.
15. 如图,在△ABC中,AC=BC=4,∠ACB=90°,若点D是AB的中点,分别以点A、B为圆心,AB长为半径画弧,交AC于点E,交BC于点F,则图中阴影部分的周长是_____.
16. 如图,在矩形纸片ABCD中,AD=10,AB=8,将AB沿AE翻折,使点B落在处,AE为折痕;再将EC沿EF翻折,使点C恰好落在线段EB'上的点处,EF为折痕,连接.若CF=3,则tan=_____.
17. 已知二次函数(,,是常数,)与的部分对应值如下表:
下列结论:
①
②当时,的值随的增大而减小
③方程有两个不相等的实数根
④当时,函数有最小值-6
其中,正确结论的序号是______(把所有正确结论的序号都填上)
18. 若,则称是以10为底的对数.记作:.例如:,则;,则,对数运算满足:当,时,,例如:,则的值为______.
三、解答题(本大题共7个小题,共78分,解答应写出文字说明、推理过程或演算步骤.)
19. (1)先化简,再求值:,其中.
(2)解不等式组:并写出它的所有整数解.
20. 如图,已知反比例函数的图象与反比例函数的图象关于轴对称,,是函数图象上的两点,连接,点是函数图象上的一点,连接,.
(1)求,的值;
(2)求所在直线的表达式;
(3)求的面积.
21. 某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.
请你根据图中信息,回答下列问题:
(1)本次共调查了 名学生.
(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于 度.
(3)补全条形统计图(标注频数).
(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为 人.
(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
22. 某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.
(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?
(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?
23. 如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.
(1)求∠CDE的度数;
(2)求证:DF是⊙O的切线;
(3)若AC=DE,求tan∠ABD的值.
24. 在中,,点是直线上的一动点(不与点重合),连接,在的右侧以为斜边作等腰直角三角形,点是的中点,连接.
【问题发现】(1)如图(1),当点是的中点时,线段与的数量关系是_________,位置关系是__________.
【猜想证明】(2)如图(2),当点在边上且不是的中点时,(1)中的结论是否仍然成立?若成立,请仅就图(2)中的情况给出证明;若不成立,请说明理由.
【拓展应用】(3)若,其他条件不变,连接,.当是等边三角形时,直接写出的面积.
25. 抛物线与x轴交于A,B两点(点A在点B的左边),与y轴正半轴交于点C.
(1)如图1,若,,
①求抛物线的解析式;
②Р为抛物线上一点,连接、,若,求点P坐标;
(2)如图2,D为x轴下方抛物线上一点,连,,若,求点D的纵坐标.
机床/星期
星期一
星期二
星期三
星期四
星期五
甲
2
0
4
3
2
乙
1
3
4
0
4
-5
-4
-2
0
2
6
0
-6
-4
6
相关试卷
这是一份2024年辽宁省初中学业水平训练卷(三) 数学模拟预测题(原卷版+解析版),文件包含2024年辽宁省初中学业水平训练卷三数学模拟预测题原卷版docx、2024年辽宁省初中学业水平训练卷三数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份2024年辽宁省初中学业水平数学模拟预测题(一)(原卷版+解析版),文件包含2024年辽宁省初中学业水平数学模拟预测题一原卷版docx、2024年辽宁省初中学业水平数学模拟预测题一解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份2024年辽宁省初中学业水平练习卷(二) 数学模拟预测题(原卷版+解析版),文件包含2024年辽宁省初中学业水平练习卷二数学模拟预测题原卷版docx、2024年辽宁省初中学业水平练习卷二数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。