终身会员
搜索
    上传资料 赚现金

    专题09 平面直角坐标系与函数基础-备战2024年中考数学真题题源解密(全国通用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题09 平面直角坐标系与函数基础(原卷版).docx
    • 解析
      专题09 平面直角坐标系与函数基础(解析版).docx
    • 练习
      专题09 平面直角坐标系与函数基础(考点回归).docx
    专题09 平面直角坐标系与函数基础(原卷版)第1页
    专题09 平面直角坐标系与函数基础(原卷版)第2页
    专题09 平面直角坐标系与函数基础(原卷版)第3页
    专题09 平面直角坐标系与函数基础(解析版)第1页
    专题09 平面直角坐标系与函数基础(解析版)第2页
    专题09 平面直角坐标系与函数基础(解析版)第3页
    专题09 平面直角坐标系与函数基础(考点回归)第1页
    专题09 平面直角坐标系与函数基础(考点回归)第2页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题09 平面直角坐标系与函数基础-备战2024年中考数学真题题源解密(全国通用)

    展开

    这是一份专题09 平面直角坐标系与函数基础-备战2024年中考数学真题题源解密(全国通用),文件包含专题09平面直角坐标系与函数基础原卷版docx、专题09平面直角坐标系与函数基础解析版docx、专题09平面直角坐标系与函数基础考点回归docx等3份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。

    1. 理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置,由点的位置写出它的坐标;
    2. 在实际问题中,能建立适当的直角坐标系,描述物体的位置;
    3. 探索简单实例中的数量关系和变化规律,了解常量、变量的意义;
    4. 结合实例,了解函数的概念和三种表示法,能举出函数的实例;
    5. 能结合图象对简单实际问题中的函数关系进行分析;
    6. 能确定简单实际问题中函数自变量的取值范围,并会求出函数值;
    7. 能用适当的函数表示法刻画简单实际问题中变量之间的关系;
    8. 结合对函数关系的分析,能对变量的变化情况进行初步讨论.
    该版块内容是初中代数最重要的部分,是代数的基础,是非常基础也是非常重要的,年年都会考查,分值为8分左右,预计2024年各地中考还将出现,在选填题中出现的可能性较大.
    ►考向一 点的坐标
    1.(2023•丽水)在平面直角坐标系中,点P(﹣1,m2+1)位于( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    2.(2023•大庆)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )
    A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)
    3.(2023•衢州)在如图所示的方格纸上建立适当的平面直角坐标系,若点A的坐标为(0,1),点B的坐标为(2,2),则点C的坐标为 .
    ►考向二 规律型:点的坐标
    4.(2023•日照)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1+2+3+4+⋯+100时,用到了一种方法,将首尾两个数相加,进而得到1+2+3+4+⋯+100=.人们借助于这样的方法,得到1+2+3+4+⋯+n=(n是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点Ai(xi,yi),其中i=1,2,3,⋯,n,⋯,且xi,yi是整数.记an=xn+yn,如A1(0,0),即a1=0,A2(1,0),即a2=1,A3(1,﹣1),即a3=0,⋯,以此类推.则下列结论正确的是( )
    A.a2023=40B.a2024=43
    C.=2n﹣6D.=2n﹣4
    5.(2023•泰安)已知,△OA1A2,△A3A4A5,△A6A7A8,…都是边长为2的等边三角形,按如图所示摆放.点A2,A3,A5,…都在x轴正半轴上,且A2A3=A5A6=A8A9=…=1,则点A2023的坐标是 .
    ►考向三 坐标与图形性质
    6.(2023•鄂州)如图,在平面直角坐标系中,O为原点,OA=OB=3,点C为平面内一动点,BC=,连接AC,点M是线段AC上的一点,且满足CM:MA=1:2.当线段OM取最大值时,点M的坐标是( )
    A.(,)B.(,)
    C.(,)D.(,)
    7.(2023•台湾)如图,坐标平面上直线L的方程式为x=﹣5,直线M的方程式为y=﹣3,P点的坐标为(a,b).根据图中P点位置判断,下列关系何者正确( )
    A.a<﹣5,b>﹣3B.a<﹣5,b<﹣3C.a>﹣5,b>﹣3D.a>﹣5,b<﹣3
    ►考向四 函数关系式
    8.(2022•益阳)已知一个函数的因变量y与自变量x的几组对应值如表,则这个函数的表达式可以是( )
    9.(2022•大连)汽车油箱中有汽油30L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当0≤x≤300时,y与x的函数解析式是( )
    A.y=0.1xB.y=﹣0.1x+30
    C.y=D.y=﹣0.1x2+30x
    10.(2020•台湾)如图为有春蛋糕店的价目表,阿凯原本拿了4个蛋糕去结账,结账时发现该点正在举办优惠活动,优惠方式为每买5个蛋糕,其中1个价格最低的蛋糕免费,因此阿凯后来多买了1个黑樱桃蛋糕.若阿凯原本的结账金额为x元,后来的结账金额为y元,则x与y的关系式不可能为下列何者?( )
    A.y=xB.y=x+5C.y=x+10D.y=x+15
    ►考向五 函数自变量的取值范围
    11.(2023•牡丹江)函数y=中,自变量x的取值范围是( )
    A.x≤1B.x≥﹣1C.x<﹣1D.x>1
    12.(2023•西藏)函数中自变量x的取值范围是 .
    13.(2023•广安)函数y=的自变量x的取值范围是 .
    ►考向六 函数的图象
    14.(2023•自贡)如图1,小亮家、报亭、羽毛球馆在一条直线上.小亮从家跑步到羽毛球馆打羽毛球,再去报亭看报,最后散步回家.小亮离家距离y与时间x之间的关系如图2所示.下列结论错误的是( )
    A.小亮从家到羽毛球馆用了7分钟
    B.小亮从羽毛球馆到报亭平均每分钟走75米
    C.报亭到小亮家的距离是400米
    D.小亮打羽毛球的时间是37分钟
    15.(2023•绍兴)已知点M(﹣4,a﹣2),N(﹣2,a),P(2,a)在同一个函数图象上,则这个函数图象可能是( )
    A.B.
    C.D.
    16.(2023•盐城)如图,关于x的函数y的图象与x轴有且仅有三个交点,分别是(﹣3,0),(﹣1,0),(3,0),对此,小华认为:①当y>0时,﹣3<x<﹣1;②当x>﹣3时,y有最小值;③点P(m,﹣m﹣1)在函数y的图象上,符合要求的点P只有1个;④将函数y的图象向右平移1个或3个单位长度经过原点.其中正确的结论有( )
    A.4个B.3个C.2个D.1个
    ►考向七 动点问题的函数图象
    17.(2023•齐齐哈尔)如图,在正方形ABCD中,AB=4,动点M,N分别从点A,B同时出发,沿射线AB,射线BC的方向匀速运动,且速度的大小相等,连接DM,MN,ND.设点M
    运动的路程为x(0≤x≤4),△DMN的面积为S,下列图象中能反映S与x之间函数关系的是( )
    A.B.
    C.D.
    18.(2023•遂宁)如图,在△ABC中,AB=10,BC=6,AC=8,点P为线段AB上的动点.以每秒1个单位长度的速度从点A向点B移动,到达点B时停止.过点P作PM⊥AC于点M.作PN⊥BC于点N,连结MN,线段MN的长度y与点P的运动时间t(秒)的函数关系如图所示,则函数图象最低点E的坐标为( )
    A.(5,5)B.(6,)C.(,)D.(,5)
    19.(2023•河北)如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且AM=CN.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M→A→D→C→N和N→C→B→A→M.若移动时间为x,两个机器人之间距离为y.则y与x关系的图象大致是( )
    A.B.
    C.D.
    ►考向八 函数的表示方法
    20.(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为 .
    21.(2022•阿坝州)在某火车站托运物品时,不超过1kg的物品需付款2元,以后每增加1kg(不足1kg按1kg计)需增加托运费0.5元.则托运x kg(x为大于1的整数)物品的费用为 0.5x+1.5 元.
    22.(2021•永州)已知函数y=,若y=2,则x= .
    1.(2023•台州)如图是中国象棋棋盘的一部分,建立如图所示的平面直角坐标系,已知“車”所在位置的坐标为(﹣2,2),则“炮”所在位置的坐标为( )
    A.(3,1)B.(1,3)C.(4,1)D.(3,2)
    2.(2023•黄石)函数的自变量x的取值范围是( )
    A.x≥0B.x≠1C.x≥0且x≠1D.x>1
    3.(2022•枣庄)已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是( )
    A.y1=x2+2x和y2=﹣x+1B.y1=和y2=x+1
    C.y1=﹣和y2=﹣x﹣1D.y1=x2+2x和y2=﹣x﹣1
    4.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.
    【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.
    【问题】路线①③⑥⑦⑧各路段路程之和为( )
    A.4200米B.4800米C.5200米D.5400米
    5.(2023•滨州)由化学知识可知,用pH表示溶液酸碱性的强弱程度,当pH>7时溶液呈碱性,当pH<7时溶液呈酸性,若将给定的NaOH溶液加水稀释,那么在下列图象中,能大致反映NaOH溶液的pH与所加水的体积V之间对应关系的是( )
    A.B.
    C.D.
    6.(2023•南通)如图1,△ABC中,∠C=90°,AC=15,BC=20.点D从点A出发沿折线A﹣C﹣B运动到点B停止,过点D作DE⊥AB,垂足为E.设点D运动的路径长为x,△BDE的面积为y,若y与x的对应关系如图2所示,则a﹣b的值为( )
    A.54B.52C.50D.48
    7.(2023•锦州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,在△DEF中,DE=DF=5,EF=8,BC与EF在同一条直线上,点C与点E重合.△ABC以每秒1个单位长度的速度沿线段EF所在直线向右匀速运动,当点B运动到点F时,△ABC停止运动.设运动时间为t秒,△ABC与△DEF重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )
    A.B.
    C.D.
    8.(2023•辽宁)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是( )
    A.B.
    C.D.
    9.(2023•绥化)如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A﹣B﹣C向终点C运动;点N以每秒1个单位长度沿线段AD向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是( )
    A.B.
    C.D.
    10.(2023•东营)如图,一束光线从点A(﹣2,5)出发,经过y轴上的点B(0,1)反射后经过点C(m,n),则2m﹣n的值是 .
    11.(2023•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点A1,以OA1为边作正方形A1B1C1O,点C1在y轴上,延长C1B1交直线l于点A2,以C1A2为边作正方形A2B2C2C1,点C2在y轴上,以同样的方式依次作正方形A3B3C3C2,⋯,正方形A2023B2023C2023C2022,则点B2023的横坐标是 .
    12.(2023•齐齐哈尔)如图,在平面直角坐标系中,点A在y轴上,点B在x轴上,OA=OB=4,连接AB,过点O作OA1⊥AB于点A1,过点A1作A1B1⊥x轴于点B1;过点B1作B1A2⊥AB于点A2,过点A2作A2B2⊥x轴于点B2;过点B2作B2A3⊥AB于点A3,过点A3作A3B3⊥x轴于点B3;…;按照如此规律操作下去,则点A2023的坐标为 .
    13.(2023•贵州)如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,若贵阳北站的坐标是(﹣2,7),则龙洞堡机场的坐标是 .
    时针方向依次画出与正半轴的角度分别为30°、60°、90°、120°、…、330°的射线,这样就建立了“圆”坐标系.如图,在建立的“圆”坐标系内,我们可以将点A、B、C的坐标分别表示为A(6,60°)、B(5,180°)、C(4,330°),则点D的坐标可以表示为 .
    15.(2023•黑龙江)在函数y=中,自变量x的取值范围是 .
    16.(2023•哈尔滨)在函数中,自变量x的取值范围是 .
    17.(2023•临沂)小明利用学习函数获得的经验研究函数y=x2+的性质,得到如下结论:
    ①当x<﹣1时,x越小,函数值越小;
    ②当﹣1<x<0时,x越大,函数值越小;
    ③当0<x<1时,x越小,函数值越大;
    ④当x>1时,x越大,函数值越大.
    其中正确的是 (只填写序号).
    18.(2022•上海)已知f(x)=3x,则f(1)= .
    19.(2023•永州)小明观察到一个水龙头因损坏而不断地向外滴水,为探究其漏水造成的浪费情况,小明用一个带有刻度的量筒放在水龙头下面装水,每隔一分钟记录量筒中的总水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如表的一组数据:
    (1)探究:根据上表中的数据,请判断和y=kt+b(k,b为常数)哪一个能正确反映总水量y与时间t的函数关系?并求出y关于t的表达式;
    (2)应用:
    ①请你估算小明在第20分钟测量时量筒的总水量是多少毫升?
    ②一个人一天大约饮用1500毫升水,请你估算这个水龙头一个月(按30天计)的漏水量可供一人饮用多少天.
    20.(2021•浙江)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”,80米~100米为“冲刺期”.市田径队把运动员小斌某次百米跑训练时速度y(m/s)与路程x(m)之间的观测数据,绘制成曲线如图所示.
    (1)y是关于x的函数吗?为什么?
    (2)“加速期”结束时,小斌的速度为多少?
    (3)根据如图提供的信息,给小斌提一条训练建议.
    21.(2021•大连)如图,在正方形ABCD中,AB=2,点E在边BC上,点F在边AD的延长线上,AF=EF,设BE=x,AF=y,当0<x<2时,y关于x的函数解析式为 .
    22.(2023•大连)如图1,在平面直角坐标系xOy中,点A,B分别在x轴和y轴上,直线AB与直线y=x相交于点C,点P是线段OA上一个动点(不与点A重合),过点P作x轴的垂线与直线AB相交于点D.设点P的横坐标为t.△DPA与△COA重叠部分的面积为S.S关于t的函数图象如图2所示(其中0≤t<m与m≤t<4时,函数的解析式不同).
    (1)点A的坐标是 ,△COA的面积是 .
    (2)求S关于t的函数解析式,并直接写出自变量t的取值范围.
    知识目标(新课程标准提炼)
    中考解密(分析考察方向,精准把握重难点)
    重点考向(以真题为例,探究中考命题方向)
    ►考向一 不等式的性质
    ►考向二 不等式的解集
    ►考向三 在数轴上表示不等式的解集
    ►考向四 解一元一次不等式
    ►考向五 一元一次不等式的整数解
    ►考向六 一元一次不等式的应用
    ►考向七 解一元一次不等式组
    ►考向八 一元一次不等式组的整数解
    ►考向九 一元一次不等式组的应用
    最新真题荟萃(精选最新典型真题,强化知识运用,优化解题技巧)
    解题技巧/易错易混/特别提醒
    1.有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.
    2.确定点在坐标平面内的位置,关键是根据不同象限中点的坐标特征去判断,根据题中的已知条件,判断横坐标、纵坐标是大于0,等于0,还是小于0,就可以确定点在坐标平面内的位置.
    解题技巧/易错易混/特别提醒
    1.象限角平分线上的点的坐标特征:
    (1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;
    (2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.
    2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|,到坐标原点的距离为.
    3.一般地,点P与点P1关于x轴对称,则横坐标相同,纵坐标互为相反数;点P与点P2关于y轴对称,则纵坐标相同,横坐标互为相反数,点P与点P3关于原点对称,则横、纵坐标分别互为相反数,简单记为“关于谁谁不变,关于原点都改变”.
    x

    ﹣1
    0
    1
    2

    y

    ﹣2
    0
    2
    4

    解题技巧/易错易混/特别提醒
    1.动点问题多数情况下会与分类讨论的数学思想及方程、函数思想结合起来进行.
    2.把动点产生的线段长用时间变量t表示出来以后,动点问题就“静态化”处理了.
    x

    ﹣1
    0
    1
    3

    y

    0
    3
    4
    0

    时间t
    (单位:分钟)
    1
    2
    3
    4
    5

    总水量y
    (单位:毫升)
    7
    12
    17
    22
    27

    相关试卷

    突破06 函数与几何图形动态探究题-备战2024年中考数学真题题源解密(全国通用):

    这是一份突破06 函数与几何图形动态探究题-备战2024年中考数学真题题源解密(全国通用),文件包含突破06函数与几何图形动态探究题原卷版docx、突破06函数与几何图形动态探究题教师版docx等2份试卷配套教学资源,其中试卷共146页, 欢迎下载使用。

    突破03 函数问题过程性学习探究型-备战2024年中考数学真题题源解密(全国通用):

    这是一份突破03 函数问题过程性学习探究型-备战2024年中考数学真题题源解密(全国通用),文件包含突破03函数问题过程性学习探究型原卷版docx、突破03函数问题过程性学习探究型解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。

    专题12 二次函数(10类重点考向)-备战2024年中考数学真题题源解密(全国通用):

    这是一份专题12 二次函数(10类重点考向)-备战2024年中考数学真题题源解密(全国通用),文件包含专题12二次函数10类重点考向原卷版docx、专题12二次函数10类重点考向解析版docx、专题12二次函数10类重点考向考点回归docx等3份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map