所属成套资源:2023年北京高三二模数学分类汇编
2023年北京高三二模数学分类汇编-专题07 解答基础题型:三角函数、解三角形与立体几何(原卷版)
展开
这是一份2023年北京高三二模数学分类汇编-专题07 解答基础题型:三角函数、解三角形与立体几何(原卷版),共8页。试卷主要包含了解答题等内容,欢迎下载使用。
一、解答题
1.(2023·北京西城·统考二模)已知函数,其中.再从条件①、条件②、条件③中选择一个作为已知,使存在,并完成下列两个问题.
(1)求的值;
(2)当时,若曲线与直线恰有一个公共点,求的取值范围.
条件①:;
条件②:是的一个零点;
条件③:.
注:如果选择多个条件分别解答,按第一个解答计分.
2.(2023·北京昌平·统考二模)在中,.
(1)求;
(2)若,求的面积.
3.(2023·北京东城·统考二模)在中,.
(1)求;
(2)若,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使存在且唯一确定,求及的面积.
条件①:;
条件②:;
条件③:.
4.(2023·北京朝阳·二模)在中,,,.
(1)求的面积;
(2)求c及的值.
5.(2023·北京海淀·统考二模)已知函数,且.
(1)求的值和的最小正周期;
(2)求在上的单调递增区间.
6.(2023·北京丰台·统考二模)在四边形ABCD中,,再从条件①,条件②这两个条件中选择一个作为已知,解决下列问题.
(1)求BD的长;
(2)求四边形ABCD的面积.
条件①:;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
7.(2023·北京丰台·统考二模)如图,在多面体中,面是正方形,平面,平面平面,,,,四点共面,,.
(1)求证:;
(2)求点到平面的距离;
(3)过点与垂直的平面交直线于点,求的长度.
8.(2023·北京海淀·统考二模)如图,在四棱锥中,平面ABCD,底面ABCD为菱形,E,F分别为AB,PD的中点.
(1)求证:EF//平面PBC;
(2)若,二面角的大小为,再从条件①、条件②这两个条件中选择一个作为已知.求PD的长.
条件①:;条件②:.
9.(2023·北京朝阳·二模)如图,在四棱锥中,底面ABCD是矩形,底面ABCD,且,E是PC的中点,平面ABE与线段PD交于点F.
(1)证明:F为PD的中点;
(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线BE与平面PAD所成角的正弦值.
条件①:三角形BCF的面积为;
条件②:三棱锥的体积为1.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
10.(2023·北京东城·统考二模)如图,直角三角形和等边三角形所在平面互相垂直,,是线段上一点.
(1)设为的中点,求证:;
(2)若直线和平面所成角的正弦值为,求的值.
11.(2023·北京昌平·统考二模)在四棱锥中,底面是边长为2的菱形,,且平面,分别是的中点,是上一点,且.
(1)求证:平面;
(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线与平面所成角的正弦值.
条件①:;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答记分.
12.(2023·北京西城·统考二模)如图,在直三棱柱中,,,分别为,,的中点.
(1)求证:平面;
(2)若,求直线与平面所成角的正弦值.
13.(2023·北京房山·统考二模)如图,已知直三棱柱中,,为中点,,再从条件①,条件②这两个条件中选择一个作为已知,完成以下问题:
(1)证明:;
(2)求直线与平面所成角的正弦值.
条件①:;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
相关试卷
这是一份2023年北京高三二模数学分类汇编-专题09 解答压轴题型:导数与数列新定义(解析版),共25页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份2023年北京高三二模数学分类汇编-专题09 解答压轴题型:导数与数列新定义(原卷版),共8页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份2023年北京高三二模数学分类汇编-专题06 选择填空压轴题型:立体几何与函数数列综合(原卷版),共6页。试卷主要包含了单选题,填空题,双空题等内容,欢迎下载使用。