所属成套资源:2024年高考押题预测卷:全国卷
2024年高考押题预测卷—数学(全国卷理科02)(考试版)
展开这是一份2024年高考押题预测卷—数学(全国卷理科02)(考试版),共6页。
理科 数学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则( )
A.B.C.D.
2.已知复数,则的虚部为( )
A.B.C.1D.
3.设,是两条不同的直线,,是两个不同的平面,若,,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件
4.已知函数的图象如图所示,则函数的解析式可能为( )
A.B.
C.D.
5.已知平面向量满足,则与的夹角为( )
A.B.C.D.
6.已知在R上单调递增,且为奇函数.若正实数a,b满足,则的最小值为( )
A.B.C.D.
7.2024年3月16日下午3点,在贵州省黔东南苗族侗族自治州榕江县“村超”足球场,伴随平地村足球队在对阵口寨村足球队中踢出的第一脚球,2024年第二届贵州“村超”总决赛阶段的比赛正式拉开帷幕.某校足球社的五位同学准备前往村超球队所在村寨调研,将在第一天前往平地村、口寨村、忠诚村,已知每个村至少有一位同学前往,五位同学都会进行选择并且每位同学只能选择其中一个村,若学生甲和学生乙必须选同一个村,则不同的选法种数是( )
A.18B.36C.54D.72
8.已知,则( )
A. B. C.D.
9.已知,则的大小关系是( )
A.B.C. D.
10.已知椭圆:的左焦点为,如图,过点作倾斜角为的直线与椭圆交于,两点,为线段的中点,若(为坐标原点),则椭圆的离心率为( )
A.B.C.D.
11.在棱长为1的正方体中,分别为的中点,点在正方体的表面上运动,且满足,则下列说法正确的是( )
A.点可以是棱的中点B.线段的最大值为
C.点的轨迹是正方形D.点轨迹的长度为
12.若函数有两个不同的极值点,且恒成立,则实数的取值范围为( )
A.B.C.D.
第二部分(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分
13.若数列满足,,则 .
14.已知函数,其中为常数,且,将函数的图象向左平移个单位所得的图象对应的函数在取得极大值,则的值为 .
15.已知函数的最大值为,若函数有三个零点,则实数的取值范围是 .
16.已知四棱锥的高为,底面为菱形,,分别为的中点,则四面体的体积为 ;三棱锥的外接球的表面积的最小值为 .
三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.已知的内角的对边分别为.
(1)求的值;
(2)若的面积为,且,求的周长.
18.某校高三年级进行班级数学文化知识竞赛,每班选三人组成代表队,其中1班和2班进入最终的决赛.决赛第一轮要求两个班级的代表队队员每人回答一道必答题,答对则为本班得1分,答错或不答都得0分.已知1班的三名队员答对的概率分别为、、,班的三名队员答对的概率都是,每名队员回答正确与否相互之间没有影响.用、分别表示1班和2班的总得分.
(1)求随机变量、的数学期望;
(2)若,求2班比1班得分高的概率.
19.如图,在圆柱中,一平面沿竖直方向截圆柱得到截面矩形,其中,为圆柱的母线,点在底面圆周上,且过底面圆心,点D,E分别满足,过的平面与交于点,且.
(1)当时,证明:平面平面;
(2)若与平面所成角的正弦值为,求的值.
20.已知动圆经过定点,且与直线相切,设动圆圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设过点的直线,分别与曲线交于,两点,直线,的斜率存在,且倾斜角互补,求证:直线的倾斜角为定值.
21.已知函数.
(1)若函数在处的切线与坐标轴围成的三角形的面积为,求的值;
(2)若函数的最小值为,求的值.
(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.
选修4-4:坐标系与参数方程
22.已知在平面直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为;在平面直角坐标系中,曲线的参数方程为(为参数),点的极坐标为且点在曲线上.
(1)求曲线的普通方程以及曲线的极坐标方程;
(2)已知直线与曲线分别交于,两点,其中,异于原点,求的面积.
选修4-5:不等式选讲
23.已知函数.
(1)当时,求不等式的解集;
(2)若恒成立,求的取值范围.
相关试卷
这是一份2024年高考押题预测卷—数学(全国卷理科02)(参考答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年高考押题预测卷—数学(全国卷理科03)(考试版),共5页。
这是一份2024年高考押题预测卷—数学(全国卷理科02)(全解全析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。