- 2024年中考数学二轮复习压轴题培优练习专题6二次函数与平行四边形存在性问题(2份打包,原卷版+教师版) 试卷 0 次下载
- 2024年中考数学二轮复习压轴题培优练习专题7二次函数与菱形存在性问题(2份打包,原卷版+教师版) 试卷 0 次下载
- 2024年中考数学二轮复习压轴题培优练习专题10二次函数与圆存在性问题(2份打包,原卷版+教师版) 试卷 0 次下载
- 2024年中考数学二轮复习压轴题培优练习专题11二次函数与单线段最值问题(2份打包,原卷版+教师版) 试卷 0 次下载
- 2024年中考数学二轮复习压轴题培优练习专题12二次函数与线段和(将军饮马型)最值问题(2份打包,原卷版+教师版) 试卷 0 次下载
2024年中考数学二轮复习压轴题培优练习专题09二次函数与正方形存在性问题(2份打包,原卷版+教师版)
展开二次函数与正方形存在性问题
1.作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;
(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.
2.对于二次函数与正方形的存在性问题,常见的处理思路有:
思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.
思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.
3.示例:在平面直角坐标系中,已知A、B的坐标,在平面中求C、D使得以A、B、C、D为顶点的四边形是正方形.
如图,一共6个这样的点C使得以A、B、C为顶点的三角形是等腰直角三角形.
【例1】(2022•齐齐哈尔)综合与探究
如图,某一次函数与二次函数y=x2+mx+n的图象交点为A(﹣1,0),B(4,5).
(1)求抛物线的解析式;
(2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为 ;
(3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度的最大值;
(4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.
【例2】.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:
(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;
(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;
(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.
【例3】(2022•海南)如图1,抛物线y=ax2+2x+c经过点A(﹣1,0)、C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D.
(1)求该抛物线的函数表达式;
(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;
(3)点Q在抛物线上,当的值最大且△APQ是直角三角形时,求点Q的横坐标;
(4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI∥y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y轴上时,请直接写出点G的坐标.
【例4】(2022•长春)在平面直角坐标系中,抛物线y=x2﹣bx(b是常数)经过点(2,0).点A在抛物线上,且点A的横坐标为m(m≠0).以点A为中心,构造正方形PQMN,PQ=2|m|,且PQ⊥x轴.
(1)求该抛物线对应的函数表达式;
(2)若点B是抛物线上一点,且在抛物线对称轴左侧.过点B作x轴的平行线交抛物线于另一点C,连结BC.当BC=4时,求点B的坐标;
(3)若m>0,当抛物线在正方形内部的点的纵坐标y随x的增大而增大时,或者y随x的增大而减小时,求m的取值范围;
(4)当抛物线与正方形PQMN的边只有2个交点,且交点的纵坐标之差为时,直接写出m的值.
1.(2020•乐平市一模)如图,抛物线y=a(x﹣h)2+k(a≠0)的顶点为A,对称轴与x轴交于点C,当以AC为对角线的正方形ABCD的另外两个顶点B、D恰好在抛物线上时,我们把这样的抛物线称为美丽抛物线,正方形ABCD为它的内接正方形.
(1)当抛物线y=ax2+1是美丽抛物线时,则a= ;当抛物线y=+k是美丽抛物线时,则k= ;
(2)若抛物线y=ax2+k是美丽抛物线时,则请直接写出a,k的数量关系;
(3)若y=a(x﹣h)2+k是美丽抛物线时,(2)a,k的数量关系成立吗?为什么?
(4)系列美丽抛物线yn=an(x﹣n)2+kn(n为小于7的正整数)顶点在直线y=x上,且它们中恰有两条美丽抛物线内接正方形面积比为1:16.求它们二次项系数之和.
2.(2016秋•西城区校级期中)我们规定:在正方形ABCD中,以正方形的一个顶点A为顶点,且过对角顶点C的抛物线,称为这个正方形的以A为顶点的对角抛物线.
(1)在平面直角坐标系xOy中,点在轴正半轴上,点C在y轴正半轴上.
①如图1,正方形OABC的边长为2,求以O为顶点的对角抛物线;
②如图2,在平面直角坐标系xOy中,正方形OABC的边长为a,其以O为顶点的对角抛物线的解析式为y=x2,求a的值;
(2)如图3,正方形ABCD的边长为4,且点A的坐标为(3,2),正方形的四条对角抛物线在正方形ABCD内分别交于点M、P、N、Q,直接写出四边形MPNQ的形状和四边形MPNQ的对角线的交点坐标.
3.(2022•陇县二模)在平面直角坐标系中,已知抛物线经过A(﹣2,0),两点,且与y轴交于点C,点B是该抛物线的顶点.
(1)求抛物线L1的表达式;
(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.
4.(2022•临潼区二模)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),B(1,﹣)两点,且与y轴交于点C,点B是该抛物线的顶点.
(1)求抛物线L1的表达式;
(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边
形是正方形,求抛物线L2的解析式.
5.(2022•松阳县一模)如图,抛物线与x轴,y轴分别交于A,D,C三点,已知点A(4,0),点C(0,4).若该抛物线与正方形OABC交于点G且CG:GB=3:1.
(1)求抛物线的解析式和点D的坐标;
(2)若线段OA,OC上分别存在点E,F,使EF⊥FG.
已知OE=m,OF=t
①当t为何值时,m有最大值?最大值是多少?
②若点E与点R关于直线FG对称,点R与点Q关于直线OB对称.问是否存在t,使点Q恰好落在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.
6.(2022•香坊区校级开学)在平面直角坐标系中,点O为坐标原点,点A、C分别在x轴、y轴正半轴上,四边形OABC是正方形,抛物线y=﹣x2+bx+c经过点B、C,OA=18.
(1)如图1,求抛物线的解析式;
(2)如图2,点D是OA的中点,经过点D的直线交AB于点E、交y轴于点F,连接BD,若∠EDA=2∠ABD,求直线DE的解析式;
(3)如图3,在(2)的条件下,点G在OD上,连接GC、GE,点P在AB右侧的抛物线上,点Q为BP中点,连接DQ,过点B作BH⊥BP,交直线DP于点H,连接CH、GH,若GC=GE,DQ=PQ,求△CGH的周长.
7.(2021•咸丰县一模)如图,在平面直角坐标系中,抛物线与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l,P是该抛物线上一动点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为.以PQ,QM为边作矩形PQMN.
(1)求抛物线的解析式;
(2)当点Q与点M重合时,求m的值;
(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值;
(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,求m的取值范围.
8.(2021•云南模拟)如图1,在平面直角坐标系xOy中,抛物线与x轴交于点A,B(点A在点B的左侧),交y轴于点C,且经过点D(5,6).
(1)求抛物线的解析式及点A,B的坐标;
(2)在平面直角坐标系xOy中,是否存在点P,使△APD是等腰直角三角形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由;
(3)在直线AD下方,作正方形ADEF,并将沿对称轴平移|t|个单位长度(规定向上平移时t为正,向下平移时t为负,不平移时t为0),若平移后的抛物线与正方形ADEF(包括正方形的内部和边)有公共点,求t的取值范围.
9.(2019秋•温州校级月考)如图1所示,动点A、B同时从原点O出发,运动的速度都是每秒1个单位,动点A沿x轴正方向运动,动点B沿y轴正方向运动,以OA、OB为邻边建立正方形OACB,抛物线y=﹣x²+bx+c经过B、C两点,假设A、B两点运动的时间为t秒.
(1)当t=3秒时,求此时抛物线的解析式;此时抛物线上是否存在一点D,使得S△BCD=6?若存在,求出点D的坐标;若不存在,说明理由;
(2)如图2,在(1)的条件下,有一条平行于y轴的动直线l,交抛物线于点E,交直线OC于点F,若以O、B、E、F四个点构成的四边形是平行四边形,求点F的坐标;
(3)在动点A、B运动的过程中,若正方形OACB内部有一个点P,且满足OP=,CP=,∠OPA=135°,直接写出此时AP的长度.
10.(2021•峨眉山市模拟)如图,已知直线y=与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.
(1)求抛物线的解析式;
(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.
11.(2021•深圳模拟)如图1,抛物线C1:y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,且顶点为C,直线y=kx+2经过A,C两点.
(1)求直线AC的表达式与抛物线C1的表达式;
(2)如图2,将抛物线C1沿射线AC方向平移一定距离后,得到抛物线为C2,其顶点为D,抛物线C2与直线y=kx+2的另一交点为E,与x轴交于M,N两点(M点在N点右边),若S△MDE=S△MAE,求点D的坐标;
(3)如图3,若抛物线C1向上平移4个单位得到抛物线C3,正方形GHST的顶点G,H在x轴上,顶点S,T在x轴上方的抛物线C3上,P(m,0)是射线GH上一动点,则正方形GHST的边长为 ,当m= 时,有最小值 .
12.(2021•社旗县二模)如图,抛物线y=ax2+bx+c过(1,0),(3,0),(0,6)三点,边长为4的正方形OABC的顶点A,C分别在x轴上,y轴上.
(1)求抛物线解析式,并直接写出当﹣1≤x≤4时,y的最大值与最小值的差.
(2)将正方形OABC向右平移,平移距离记为h,
①当点C首次落在抛物线上,求h的值.
②当抛物线落在正方形内的部分,满足y随x的增大而减小时,请直接写出h的取值范围.
13.(2021•越秀区校级一模)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q;M是直线l上的一点,其纵坐标为﹣m+,以PQ,QM为边作矩形PQMN.
(1)求b的值.
(2)当点Q与点M重合时,求m的值.
(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.
(4)抛物线在矩形PQMN内的部分称为被扫描部分.请问该抛物线是否全部被扫描?若是,请说明理由,若否,直接写出抛物线被扫描部分自变量的取值范围.
14.(2020秋•新抚区期末)如图,抛物线y=x2+bx+c经过A(﹣3,0),B(1,0)两点,与y轴交于点C,P为y轴上的动点,连接AP,以AP为对角线作正方形AMPN.
(1)求抛物线的解析式;
(2)当正方形AMPN与△AOP面积之比为5:2时,求点P的坐标;
(3)当正方形AMPN有两个顶点在抛物线上时,直接写出点P的坐标.
15.(2020•雁塔区校级一模)如图,抛物线y=x2+2x的顶点为A,与x轴交于B、C两点(点B在点C的左侧).
(1)请求出A、B、C三点的坐标;
(2)平移抛物线,记平移后的抛物线的顶点为D,与y轴交于点E,F为平面内一点,若以A、D、E、F为顶点的四边形是正方形,且平移后的抛物线的对称轴在y轴右侧,请求出满足条件的平移后抛物线的表达式.
16.(2020•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.
(1)求b的值.
(2)当点Q与点M重合时,求m的值.
(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.
(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.
17.(2020•雁塔区校级模拟)已知抛物线L:y=﹣ax2+2ax+c与x轴交于A、B两点(点A在点B的左侧),且AB=4.
(1)求A、B两点的坐标;
(2)将抛物线L沿x轴翻折后得到的新抛物线记为L',且记L和L'的顶点分别记为M、M',要使点A、B、M、M'为顶点的四边形是正方形,请求抛物线L的解析式.
18.(2021•龙马潭区模拟)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0)和B(4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)当点P为直线BC下方抛物线上一动点(不与点B、C重合),PM⊥BC于点M,PD⊥AB于点D,交直线BC于点N,当P点的坐标为何值时,PM+PN的值最大?
(3)点P在第四象限的抛物线上移动,以PC为边作正方形CPEF、当抛物线的对称轴经过点E时,求出此时点P的坐标.
19.(2020•海淀区校级模拟)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直.则称该矩形为点P,Q的相关矩形“.如图为点P,Q的“相关矩形”的示意图.
(1)已知点A的坐标为(1,0).
①若点B的坐标为(2,5),求点A,B的“相关矩形”的周长;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,已知抛物线y=x2+mx+n经过点A和点C,求抛物线y=x2+mx+n与y轴的交点D的坐标;
(2)⊙O的半径为4,点E是直线y=3上的从左向右的一个动点.若在⊙O上存在一点F,使得点E,F的“相关矩形”为正方形,直接写出动点E的横坐标的取值范围.
20.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点为A,B(点A在点B的左侧),在线段AB上取两点M、N(点M不与点A重合),点M、N关于这条抛物线的对称轴对称,点M在点N的左侧,分别过点M、N作x轴的垂线交抛物线于点P、Q,我们称这样的四边形MPQN为这条抛物线的“抛物线矩形.”
(1)若抛物线y=2(x+1)(x﹣3)的抛物线矩形MPQN的顶点M的坐标为(0,0),则点N的坐标为 ,点P的坐标为 ,点Q的坐标为 .
(2)当抛物线y=﹣x2+bx的抛物线矩形MPQN为正方形时,若点M的坐标为(﹣2,0),求b的值.
(3)设抛物线y=x2+4x﹣6的抛物线矩形MPQN的周长为C.点M的横坐标为m,求C与m之间的函数关系式.
(4)将抛物线y=ax2﹣6ax+5a(a≠0)的抛物线矩形MPQN绕点P顺时针或逆时针旋转90°后,边MN恰好落在y轴上,若MN=2,直接写出a的值.
21.(2022•抚顺县一模)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于点A(1,0),B(5,0)两点,与y轴交于点C,点D为抛物线的顶点.
(1)求抛物线的解析式和点D的坐标;
(2)求△BCD的面积;
(3)点M为抛物线上一动点,点N为平面内一点,以A,M,I,N为顶点作正方形,是否存在点M,使点I恰好落在对称轴上?若存在,直接写出点M的坐标;若不存在,请说明理由.
22.(2022•新化县模拟)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.
(1)求抛物线的解析式及顶点D的坐标;
(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;
(3)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
23.(2022•宜兴市校级二模)如图,在平面直角坐标系中,O为坐标原点,二次函数y=﹣x2+bx+c(b>0,c>0)图象的顶点是点A,对称轴为直线l,图象与y轴交于点C.点D在l右侧的函数图象上,点B在DC延长线上,且四边形ABOD是平行四边形.
(1)如图2,若CD∥x轴.
①求证:b2=4c;
②若▱ABOD是矩形,求二次函数的解析式;
(2)当b=2时,▱ABOD能否成为正方形,请通过计算说明理由.
24.(2022•于洪区二模)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象交y轴于点D,直线AB与之相交,且A(1,﹣)是抛物线y=x2+bx+c的顶点.
(1)b= ,c= ;
(2)如图1,点P是第四象限抛物线上一点,且满足BP∥AD,抛物线交x轴于点C,连接PC.
①求直线PB的解析式;
②求PC的长;
(3)如图2,点Q是抛物线第三象限上一点(不与点B、D重合),连接BQ,以BQ为边作正方形BEFQ,当顶点E或F恰好落在抛物线对称轴上时,直接写出对应的Q点的坐标.
2024年中考数学二轮复习压轴题培优练习专题10二次函数与圆存在性问题(2份打包,原卷版+教师版): 这是一份2024年中考数学二轮复习压轴题培优练习专题10二次函数与圆存在性问题(2份打包,原卷版+教师版),文件包含2024年中考数学二轮复习压轴题培优练习专题10二次函数与圆存在性问题原卷版doc、2024年中考数学二轮复习压轴题培优练习专题10二次函数与圆存在性问题教师版doc等2份试卷配套教学资源,其中试卷共83页, 欢迎下载使用。
中考数学压轴题之学霸秘笈大揭秘(全国通用)专题09二次函数与正方形存在性问题(全国通用)(原卷版+解析): 这是一份中考数学压轴题之学霸秘笈大揭秘(全国通用)专题09二次函数与正方形存在性问题(全国通用)(原卷版+解析),共88页。试卷主要包含了示例等内容,欢迎下载使用。
中考数学二轮复习压轴题培优专题16 二次函数的存在性问题(教师版): 这是一份中考数学二轮复习压轴题培优专题16 二次函数的存在性问题(教师版),共86页。