所属成套资源:【二轮复习】2024年中考数学二轮专题突破练习(全国通用)
【二轮复习】中考数学 题型2 规律探索 类型1 数式规律(专题训练)
展开
这是一份【二轮复习】中考数学 题型2 规律探索 类型1 数式规律(专题训练),文件包含二轮复习中考数学题型2规律探索类型1数式规律专题训练教师版docx、二轮复习中考数学题型2规律探索类型1数式规律专题训练学生版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
A.B.C.D.
2.按规律排列的一组数据:,,□,,,,…,其中□内应填的数是( )
A.B.C.D.
3.(2023·山东·统考中考真题)已知一列均不为1的数满足如下关系:,,若,则的值是( )
A.B.C.D.2
4.已知为实数﹐规定运算:,,,,……,.按上述方法计算:当时,的值等于( )
A.B.C.D.
5.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数若排在第a行b列,则的值为( )
……
A.2003B.2004C.2022D.2023
6.(2023·四川内江·统考中考真题)对于正数x,规定,例如:,,,,计算:( )
A.199B.200C.201D.202
7.按一定规律排列的单项式:,,,,,,…,第个单项式是( )
A.B.C.D.
8.计算的结果是
A. B.C.D.
9.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是
A.0B.1C.7D.8
10.一列数按某规律排列如下:,…,若第n个数为,则n=
A.50B.60C.62D.71
11.根据图中数字的规律,若第n个图中出现数字396,则( )
A.17 B.18 C.19 D.20
12.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )
A.C、EB.E、FC.G、C、ED.E、C、F
13.将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )
A.2025B.2023C.2021D.2019
14.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=-1,-1的差倒数是.如果a1=-2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是
A.-7.5B.7.5C.5.5D.-5.5
15.a是不为1的有理数,我们把称为a的差倒数,如2的差倒数为=-1,-1的差倒数,已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……,依此类推,a2019的值是
A.5B.-C.D.
16.下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为( )
A.135B.153C.170D.189
17.实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg镭缩减为1mg所用的时间大约是( )
A.4860年B.6480年C.8100年D.9720年
18.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数,的平方差,且,则称这个正整数为“智慧优数”.例如,,16就是一个智慧优数,可以利用进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 ;第23个智慧优数是 .
19.(2023·湖南岳阳·统考中考真题)观察下列式子:
;;;;;…
依此规律,则第(为正整数)个等式是 .
20.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:
设有编号为1-100的100盏灯,分别对应着编号为1-100的100个开关,灯分为“亮”和“不亮”两种状态,每按一次开关改变一次相对应编号的灯的状态,所有灯的初始状态为“不亮”.现有100个人,第1个人把所有编号是1的整数倍的开关按一次,第2个人把所有编号是2的整数倍的开关按一次,第3个人把所有编号是3的整数倍的开关按一次,……,第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”
的灯共有多少盏?
几位同学对该问题展开了讨论:
甲:应分析每个开关被按的次数找出规律:
乙:1号开关只被第1个人按了1次,2号开关被第1个人和第2个人共按了2次,3号开关被第1个人和第3个人共按了2次,……
丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.
根据以上同学的思维过程,可以得出最终状态为“亮”的灯共有 盏.
21.(2023·山东临沂·统考中考真题)观察下列式子
;
;
;
……
按照上述规律, .
22.如图,点在直线上,点的横坐标为2,过点作,交x轴于点,以为边,向右作正方形,延长交x轴于点;以为边,向右作正方形,延长交x轴于点;以为边,向右作正方形,延长的交x轴于点;…;按照这个规律进行下去,则第n个正方形的边长为________(结果用含正整数n的代数式表示).
23.(2023·山东枣庄·统考中考真题)如图,在反比例函数的图象上有等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为,则 .
24.如图,在平面直角坐标系中,动点P从原点O出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点,…,按此作法进行下去,则点的坐标为___________.
25.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:;;;;…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n个数对: .
26.下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.
27.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中,四边形是正方形,点的坐标为,是以点为圆心,为半径的圆弧;是以点为圆心,为半径的圆弧,是以点为圆心,为半径的圆弧,是以点为圆心,为半径的圆弧,继续以点,,,为圆心按上述作法得到的曲线称为正方形的“渐开线”,则点的坐标是 .
28.右表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,……,我们把第一个数记为,第二个数记为,第三个数记为,……,第个数记为,则_________.
29.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:
,4,,16,,64,……①
0,7,,21,,71,……②
根据你的发现,完成填空:第①行数的第10个数为 ;取每行数的第2023个数,则这两个数的和为 .
30.按一定规律排列的一列数:3,,,,,,,,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是__________.
31.观察下列等式:;
;
;
……
根据以上规律,计算______.
32.观察等式:,,,……,已知按一定规律排列的一组数:,,,……,,若,用含的代数式表示这组数的和是___________.
33.观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是_____.
34.对于正整数,定义,其中表示的首位数字、末位数字的平方和.例如:,.规定,(为正整数),例如,,.按此定义,则由__________,___________.
35.观察下列一组数:
a1=,a2=,a3=,a4=,a5=,…,
它们是按一定规律排列的,请利用其中规律,写出第n个数an=__________.(用含n的式子表示)
36.观察以下等式:
第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
第5个等式:,
……
按照以上规律,解决下列问题:
(1)写出第6个等式:__________;
(2)写出你猜想的第n个等式:__________(用含n的等式表示),并证明.
相关试卷
这是一份【二轮复习】中考数学 题型2 规律探索 类型2 图形规律(专题训练),文件包含二轮复习中考数学题型2规律探索类型2图形规律专题训练教师版docx、二轮复习中考数学题型2规律探索类型2图形规律专题训练学生版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份题型二 规律探索 类型一 数式规律(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型二规律探索类型一数式规律专题训练原卷版docx、题型二规律探索类型一数式规律专题训练解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份题型02 规律探索 类型一 数式规律(专题训练)-最新中考数学二轮复习讲义+专题(全国通用),文件包含题型二规律探索类型一数式规律专题训练原卷版docx、题型二规律探索类型一数式规律专题训练解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。