|试卷下载
终身会员
搜索
    上传资料 赚现金
    【二轮复习】中考数学 题型9 2次函数综合题 类型12 二次函数与圆的问题(专题训练)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      【二轮复习】中考数学 题型9 二次函数综合题 类型12 二次函数与圆的问题(专题训练)(教师版).docx
    • 学生
      【二轮复习】中考数学 题型9 2次函数综合题 类型12 二次函数与圆的问题(专题训练)(学生版).docx
    【二轮复习】中考数学 题型9 2次函数综合题 类型12 二次函数与圆的问题(专题训练)01
    【二轮复习】中考数学 题型9 2次函数综合题 类型12 二次函数与圆的问题(专题训练)02
    【二轮复习】中考数学 题型9 2次函数综合题 类型12 二次函数与圆的问题(专题训练)03
    【二轮复习】中考数学 题型9 2次函数综合题 类型12 二次函数与圆的问题(专题训练)01
    【二轮复习】中考数学 题型9 2次函数综合题 类型12 二次函数与圆的问题(专题训练)02
    【二轮复习】中考数学 题型9 2次函数综合题 类型12 二次函数与圆的问题(专题训练)03
    还剩69页未读, 继续阅读
    下载需要40学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【二轮复习】中考数学 题型9 2次函数综合题 类型12 二次函数与圆的问题(专题训练)

    展开
    这是一份【二轮复习】中考数学 题型9 2次函数综合题 类型12 二次函数与圆的问题(专题训练),文件包含二轮复习中考数学题型9二次函数综合题类型12二次函数与圆的问题专题训练教师版docx、二轮复习中考数学题型92次函数综合题类型12二次函数与圆的问题专题训练学生版docx等2份试卷配套教学资源,其中试卷共91页, 欢迎下载使用。


    (1)求的长和关于的函数表达式.
    (2)当,且长度分别等于,,的三条线段组成的三角形与相似时,求的值.
    (3)延长交半圆于点,当时,求的长.
    2.(2023·山东烟台·统考中考真题)如图,抛物线与轴交于两点,与轴交于点.抛物线的对称轴与经过点的直线交于点,与轴交于点.

    (1)求直线及抛物线的表达式;
    (2)在抛物线上是否存在点,使得是以为直角边的直角三角形?若存在,求出所有点的坐标;若不存在,请说明理由;
    (3)以点为圆心,画半径为2的圆,点为上一个动点,请求出的最小值.
    3.(2023·江苏苏州·统考中考真题)如图,二次函数的图像与轴分别交于点(点A在点的左侧),直线是对称轴.点在函数图像上,其横坐标大于4,连接,过点作,垂足为,以点为圆心,作半径为的圆,与相切,切点为.

    (1)求点的坐标;
    (2)若以的切线长为边长的正方形的面积与的面积相等,且不经过点,求长的取值范围.
    4.(2023·四川自贡·统考中考真题)如图,抛物线与x轴交于,两点,与轴交于点.

    (1)求抛物线解析式及,两点坐标;
    (2)以,,,为顶点的四边形是平行四边形,求点坐标;
    (3)该抛物线对称轴上是否存在点,使得,若存在,求出点的坐标;若不存在,请说明理由.
    5.(2023·四川乐山·统考中考真题)已知是抛物(b为常数)上的两点,当时,总有
    (1)求b的值;
    (2)将抛物线平移后得到抛物线.
    探究下列问题:
    ①若抛物线与抛物线有一个交点,求m的取值范围;
    ②设抛物线与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为点E,外接圆的圆心为点F,如果对抛物线上的任意一点P,在抛物线上总存在一点Q,使得点P、Q的纵坐标相等.求长的取值范围.
    6.(2023·四川宜宾·统考中考真题)如图,抛物线与x轴交于点、,且经过点.

    (1)求抛物线的表达式;
    (2)在x轴上方的抛物线上任取一点N,射线、分别与抛物线的对称轴交于点P、Q,点Q关于x轴的对称点为,求的面积;
    (3)点M是y轴上一动点,当最大时,求M的坐标.
    7.(2023·湖北恩施·统考中考真题)在平面直角坐标系中,为坐标原点,已知抛物线与轴交于点,抛物线的对称轴与轴交于点.

    (1)如图,若,抛物线的对称轴为.求抛物线的解析式,并直接写出时的取值范围;
    (2)在(1)的条件下,若为轴上的点,为轴上方抛物线上的点,当为等边三角形时,求点,的坐标;
    (3)若抛物线经过点,,,且,求正整数m,n的值.
    8.如图1,在平面直角坐标系中,抛物线与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点的坐标值:
    (1)求出这条抛物线的解析式及顶点M的坐标;
    (2)是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求的最小值;
    (3)如图2,点D是第四象限内抛物线上一动点,过点D作轴,垂足为F,的外接圆与相交于点E.试问:线段的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
    9.如图,抛物线(其中)与x轴交于A、B两点,交y轴于点C.
    (1)直接写出的度数和线段AB的长(用a表示);
    (2)若点D为的外心,且与的周长之比为,求此抛物线的解析式;
    (3)在(2)的前提下,试探究抛物线上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,请说明理由.
    10.如图,已知二次函数的图象经过点且与轴交于原点及点.
    (1)求二次函数的表达式;
    (2)求顶点的坐标及直线的表达式;
    (3)判断的形状,试说明理由;
    (4)若点为上的动点,且的半径为,一动点从点出发,以每秒2个单位长度的速度沿线段匀速运动到点,再以每秒1个单位长度的速度沿线段匀速运动到点后停止运动,求点的运动时间的最小值.
    11.我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.
    (1)求⊙C的标准方程;
    (2)试判断直线AE与⊙C的位置关系,并说明理由.
    12.如图,抛物线y=ax2+94x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.
    (1)求该抛物线的解析式;
    (2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
    (3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.
    13.在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.
    (1)求二次函数的解析式;
    (2)如图甲,连接AC,PA,PC,若,求点P的坐标;
    (3)如图乙,过A,B,P三点作⊙M,过点P作PE⊥x轴,垂足为D,交⊙M于点E.点P在运动过程中线段DE的长是否变化,若有变化,求出DE的取值范围;若不变,求DE的长.
    14.如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
    (1)求这条抛物线对应的函数表达式;
    (2)已知R是抛物线上的点,使得△ADR的面积是平行四边形OABC的面积的,求点R的坐标;
    (3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.
    15如图1,在平面直角坐标系中,,以O为圆心,OA的长为半径的半圆O交AO的延长线于C,连接AB,BC,过O作ED//BC分别交AB和半圆O于E,D,连接OB,CD.
    (1)求证:BC是半圆O的切线;
    (2)试判断四边形OBCD的形状,并说明理由;
    (3)如图2,若抛物线经过点D,且顶点为E,求此抛物线的解析式;点P 是此抛物线对称轴上的一动点,以E,D,P为顶点的三角形与相似,问抛物线上是否存在点Q,使得,若存在,请直接写出Q点的横坐标;若不存在,说明理由.
    16.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,抛物线过点B且与直线相交于另一点.
    (1)求抛物线的解析式;
    (2)点P是抛物线上的一动点,当时,求点P的坐标;
    (3)点在x轴的正半轴上,点是y轴正半轴上的一动点,且满足.
    ①求m与n之间的函数关系式;
    ②当m在什么范围时,符合条件的N点的个数有2个?
    17.将抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线.

    (1)直接写出抛物线,的解析式;
    (2)如图(1),点在抛物线对称轴右侧上,点在对称轴上,是以为斜边的等腰直角三角形,求点的坐标;
    (3)如图(2),直线(,为常数)与抛物线交于,两点,为线段的中点;直线与抛物线交于,两点,为线段的中点.求证:直线经过一个定点.
    18.如图1,在平面直角坐标系中,点A的坐标是,在x轴上任取一点M.连接AM,分别以点A和点M为圆心,大于的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
    探究:
    (1)线段PA与PM的数量关系为________,其理由为:________________.
    (2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
    猜想:
    (3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是________.
    验证:
    (4)设点P的坐标是,根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
    应用:
    (5)如图3,点,,点D为曲线L上任意一点,且,求点D的纵坐标的取值范围.
    19.如图,已知,是的平分线,是射线上一点,.动点从点出发,以的速度沿水平向左作匀速运动,与此同时,动点从点出发,也以的速度沿竖直向上作匀速运动.连接,交于点.经过、、三点作圆,交于点,连接、.设运动时间为,其中.
    (1)求的值;
    (2)是否存在实数,使得线段的长度最大?若存在,求出的值;若不存在,说明理由.
    (3)求四边形的面积.
    20如图,抛物线y=ax2+x+c经过点A(﹣1,0)和点C (0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.
    (1)求该抛物线的解析式;
    (2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
    (3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.
    21.我们把方程(x- m)2+(y-n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,-2)、半径长为3的圆的标准方程是(x- 1)2+(y+2)2=9.在平面直角坐标系中,圆C与轴交于点A.B.且点B的坐标为(8.0),与y轴相切于点D(0, 4),过点A,B,D的抛物线的顶点为E.
    (1)求圆C的标准方程;
    (2)试判断直线AE与圆C的位置关系,并说明理由.
    x

    0
    1
    2
    3

    y

    0
    3
    4
    3
    0

    M的坐标


    P的坐标


    相关试卷

    题型9 二次函数综合题 类型9 二次函数与菱形有关的问题(专题训练)-2024年中考数学二轮题型突破(全国通用): 这是一份题型9 二次函数综合题 类型9 二次函数与菱形有关的问题(专题训练)-2024年中考数学二轮题型突破(全国通用),文件包含题型9二次函数综合题类型9二次函数与菱形有关的问题专题训练教师版docx、题型9二次函数综合题类型9二次函数与菱形有关的问题专题训练学生版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。

    题型9 二次函数综合题 类型4 二次函数与角度有关的问题12题(专题训练)-2024年中考数学二轮题型突破(全国通用): 这是一份题型9 二次函数综合题 类型4 二次函数与角度有关的问题12题(专题训练)-2024年中考数学二轮题型突破(全国通用),文件包含题型9二次函数综合题类型4二次函数与角度有关的问题12题专题训练教师版docx、题型9二次函数综合题类型4二次函数与角度有关的问题12题专题训练学生版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。

    题型九 二次函数综合题 类型四 二次函数与角度有关的问题12题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用): 这是一份题型九 二次函数综合题 类型四 二次函数与角度有关的问题12题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型九二次函数综合题类型四二次函数与角度有关的问题12题专题训练原卷版docx、题型九二次函数综合题类型四二次函数与角度有关的问题12题专题训练解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【二轮复习】中考数学 题型9 2次函数综合题 类型12 二次函数与圆的问题(专题训练)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map