所属成套资源:2023-2024学年六年级下册小升初数学思维拓展提升卷(通用版)
- (小升初典型奥数)典型应用题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版) 试卷 0 次下载
- (小升初典型奥数)分数与百分数应用题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版) 试卷 1 次下载
- (小升初典型奥数)周期问题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版) 试卷 0 次下载
- (小升初典型奥数)和倍问题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版) 试卷 0 次下载
- (小升初典型奥数)复杂和差倍问题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版) 试卷 0 次下载
(小升初典型奥数)变速及平均速度问题(培优)-2023-2024学年六年级下册小升初数学思维拓展(通用版)
展开
这是一份(小升初典型奥数)变速及平均速度问题(培优)-2023-2024学年六年级下册小升初数学思维拓展(通用版),共33页。试卷主要包含了小芳放学回家,每分钟行75米等内容,欢迎下载使用。
2.小明准时从家出发,以3.6千米/时的速度从家步行去学校,恰好提前5分钟到校.某天,当他走了1.2千米,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课,后来算了一下,如果小明从家开始就跑步,可以比一直步行早15分钟到学校.那么他家离学校多少千米?小明跑步的速度是每小时多少千米?
3.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进.问:甲、乙两班谁将获胜?
4.甲、乙两人分别从A、B两地同时出发相向而行,甲乙两人的速度比是4:5。相遇后,如果甲的速度降低25%,乙的速度提高20%,然后沿原方向行驶,当乙到达A地时,甲距离B地30km。那么A、B两地相距多少km?
5.小明乘车去公园,每小时行45千米,需要3.6小时,如果速度提高,可以提前多少小时到达?
6.甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.
7.甲乙两地相距60千米,一辆汽车先用每小时12千米的速度行了一段路,然后速度提高继续行驶,共用4.4小时到达,请问这辆车出发几小时后开始提速?
8.小明上午九点上山,每小时3千米,在山顶休息1小时后开始下山,每小时4千米,下午一点半到达山下,问他共走了多少千米.
9.小芳放学回家,每分钟行75米。原路去上学,每分钟比原来慢,结果多用2分钟。小芳家到学校有多少米?
10.一辆汽车从甲地开往乙地,如果把车速提高20%,则可提前到达;如果以原来速度行驶100千米后,再将速度提高30%,恰巧也可以提前同样的时间到达。甲、乙两地相距多少千米?
11.老王开汽车从A到B为平地,车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时.已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D的平均速度是多少?
12.从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上山以30千米/时的速度,到达山顶后以60千米/时的速度下山.求该车的平均速度.
13.甲、乙两地相距 10.5千米,某人从甲地到乙地每小时走5千米,从乙地返回甲地每小时走3千米。求他往返的平均速度?
14.小红上学,每分钟行60米,需要30分钟,如果速度提高,可以提前几分钟?
15.汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?
16.李同学骑自行车上学,因有急事从学校打的回家,来回途中共用1.5小时.如果来回都打的只需30分钟.求往返都骑自行车要用多长时间?
17.汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地.求该车的平均速度.
18.老李早上8:00从甲地出发去乙地,每小时行12千米,在乙地办事用去1.5小时,为了赶在12:00回家吃午饭,他把速度提高了,请问甲乙两地相距多少千米?
19.赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?
20.从甲地到乙地的公路,只有上坡路和下坡路,没有平路.一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米.车从甲地开往乙地需9时,从乙地到甲地需7时.问:甲、乙两地间的公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?
21.冬冬家离学校3200m,有一次他以每分钟200m的骑车速度去学校上课,骑几分钟后发现如果以这样的速度骑下去一定会迟到,他马上改用每分钟250m的速度前进,途中共用了15分钟,准时到达学校.问:冬冬是在离学校多远的地方加速的?
22.一辆摩托车从A地到B地共行驶了420km,用了5小时.途中一部分公路是水泥路,部分是普通公路,已知摩托车在水泥公路上每小时行驶110km,在普通公路上每小时行驶60km,求摩托车在普通公路上行驶了多少千米?
23.如图:从A到B是0.5千米的上坡路,从B到C是3千米的平路,从C到D是2.5千米的上坡路,下坡路速度都是每小时6千米,平路上速度都是每小时4千米,上坡速度都是每小时3千米,如果小张和小王分别从A、D两地同时出发,相向步行,几小时两人相遇?
24.某人上山速度为每小时8千米,下山的速度为每小时12千米,问此人上下山的平均速度是多少?
25.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度.
26.一辆汽车从甲地开往乙地,去时的速度是36千米/时,用了4小时到达乙地,返回时用了3小时回到甲地,返回时的速度是多少?
27.从家到学校有两条一样长的路,一条是平路,另一条的一半是上坡路,一半是下坡路.小明上学走两条路所用的时间一样,如果下坡的速度是平路的倍,那么上坡的速度是平路的多少倍.
28.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度.
29.一辆汽车从甲地开往乙地,每小时行40千米,返回时每小时行50千米,结果返回时比去时的时间少48分钟.求甲乙两地之间的路程?
30.大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?
31.快、中、慢三辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人,这三辆车分别用6分钟、10分钟、12分钟追上骑车人,现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走多少千米?
32.小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?
33.一条路全长为30公里,分为上坡、平路和下坡三段,各段路程长的比是1∶2∶3,某人走各段路程所用的时间之比是4∶5∶6,已知他上坡的速度是每小时3公里.问此人走完全程共用了多少时间?
34.一个人从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地. 骑车时每小时行12千米,步行时每小时4千米,这个人走完全程的平均速度是多少?
35.飞机以720千米/时的速度从甲地到乙地,到达后立即以480千米/时的速度返回甲地.求该飞机的平均速度.
36.一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?
37.一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为40千米/小时,要使这辆车从甲地到乙地的平均速度为每小时50千米,那么剩下的路程应该以什么速度行驶?
38.、两人同时自甲地出发去乙地,、步行的速度分别为米/分、米/分,两人骑车的速度都是米/分,先骑车到途中某地下车把车放下,立即步行前进;走到车处,立即骑车前进,当超过一段路程后,把车放下,立即步行前进,两人如此继续交替用车,最后两人同时到达乙地,那么从甲地到乙地的平均速度是每分钟多少米?
39.某司机开车从A城到B城.若按原定速度前进,则可准时到达.当路程走了一半时,司机发现前一半行程中,实际平均速度只达到原定速度的.如果司机想准时到达B城,那么在后一半的行程中,实际平均速度与原定速度的比应是多少?
40.一辆汽车从粮库到粮店运粮,来回共用15小时,去时用的时间是回来的1.5倍,回来时比去时每小时快12km,求两地的距离.
41.小强骑自行车去郊游.去时平均每小时行15千米,小时到达.原路返回时只用了小时,返回时平均每小时行多少千米?
42.一辆汽车从甲地到乙地行驶了6小时,由乙地返回甲地每小时加快8千米,结果少用1小时.求甲、乙两地的距离.
43.王师傅用3.2小时在家和工厂之间往返了一次,去时每小时25千米,返回时减速,求他家到工厂相距多少千米?
44.小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了5小时。小明去时用了多长时间?
45.一辆汽车从A地到B地计划用6小时,以原速行一段路后汽车出现故障减速行驶,后来的速度比原来减少了,结果比计划多用1小时到达。请问出发后几小时减的。
46.如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.
问:(1)小张和小王分别从A, D同时出发,相向而行,问多少时间后他们相遇?
(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米?
47.甲乙两地相距1800千米,一架飞机从甲地飞往乙地,逆风每小时飞行360千米,返回时顺风,比去时少用1小时,往返平均每小时飞行多少千米?
48.小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。小明上学走两条路所用的时间一样多。已知下坡的速度是平路的2倍,那么平路的速度是上坡的多少倍?
49.甲从A地去B地,每小时行15千米。返回时速度提高,结果少用3小时。请问A、B两地的距离是多少千米?
50.小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时.小明往返一趟共行了多少千米?
51.甲,乙两城相距480千米,一辆货车和一辆客车分别从甲、乙两城相对开出,4小时后相遇,货车和客车的速度比是3∶5。货车和客车的速度分别是多少?(5分)
52.张师傅开汽车从A到B为平地(见下图),车速是36千米/时;从B到C为上山路,车速是28千米/时;从C到D为下山路,车速是42千米/时,已知下山路是上山路的2倍,从A到D全程为72千米,张师傅开车从A到D共需要多少时间?
53.老王开汽车从A到B为平地(见下图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?
54.一辆车从甲地开往乙地。如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达。甲、乙两地之间的距离是多少千米?
55.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度.
56.小叶子上学时骑车,回家时步行,路上共用分钟,如果往返都步行,则全程需要分钟,求往返都骑车所需的时间是多少?
57.小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时,小明来回共走了多少千米?
参考答案:
1.20千米/小时
【详解】由于要求大风天和平时到校时间所用时间相同,在距离不变的情况下,平时的15千米/小时相当于平均速度.若能再把总路程“任我意”出来,在已知总距离和平均速度的情况下,总时间是可求的,例如假设总路程是30千米,从而总时间为小时.开始的三分之一路程则为10千米,所用时间为小时,可见剩下的20千米应用时1小时,从而其速度应为20千米/小时.
2.他家离学校1.8千米,小明跑步的速度是每小时7.2千米.
【详解】试题分析:设他家离学校的距离S千米,跑步速度为每小时V千米,根据题意,列出等式:…①,…②,据此,分别求出小明跑步的速度、他家离学校的距离即可.
解:设他家离学校的距离S千米,跑步速度为每小时V千米,
则…①,
…②,
由①,可得=…③,
由②,可得=…④,
由③④,可得=,
解得V=7.2,
把V=7.2代入①,可得S=1.8千米.
即他家离学校1.8千米,小明跑步的速度是每小时7.2千米.
答:他家离学校1.8千米,小明跑步的速度是每小时7.2千米.
分析:此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.
3.乙班
【详解】解:由题意很容易得知:乙班的平均速度为5千米/小时.
设总路程为“1”个单位.
甲班前半段的所花时间为:(单位·时/千米)
后半段所花的时间为:(单位·时/千米)
甲班所花的总时间为:(单位·时/千米)
所以甲班的平均速度为:(千米/小时)
所以乙班的平均速度高于甲班,乙班将获胜.
4.90km
【详解】相遇时,甲走了全程的4÷(4+5)=, 乙走了全程的1-;
当乙到达A地时,乙走的时间是÷[5×(1+20%)]=, 甲走了全程4×(1-25%)×;
A、B两地相距:30÷(1-)=90(km)
答:A、B两地相距90km。
5.0.9小时
【分析】设原来每小时行1份得路程,提速后每分钟行1+=1份得路程,原来行3.6份,现在是有3.6份,每分钟行1份,可求出提速后需要多少分钟,原来用的时间减去提速后的时间就是提前的时间。
【详解】3.6-3.6÷(1+)
=3.6-2.7
=0.9(小时)
答:可以提前0.9小时到达。
【分析】解答此题还可以按照行程问题来计算,先求路程和提速后的速度,进而求出提速后的时间。多尝试用不同的方法解答开拓思维。
6.420千米
【分析】先画一张行程示意图如下
设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.
下面的考虑重点转向速度差.
在同样的时间内,甲如果加速,就到E点,而不加速,只能到 D点.这两点距离是 12+16=28(千米),加速与不加速所形成的速度差是5千米/小时.因此,在D点(或E点)相遇所用时间是28÷5=5.6(小时).
比C点相遇少用 6-5.6=0.4(小时).
甲到达D,和到达C点速度是一样的,少用0.4小时,少走12千米.据此可求出甲的速度.同理可求乙的速度.A,B两地距离即可得出.
【详解】12+16=28(千米)
28÷5=5.6(小时)
6-5.6=0.4(小时)
甲的速度是12÷0.4=30(千米/小时)
乙的速度是16÷0.4=40(千米/小时)
A到 B距离是(30+ 40)×6=420(千米)
答:A,B两地距离是420千米.
7.2小时
【分析】思路一:假设法思想。
假设全程都以12×(1+)=15千米/时的速度行驶,则能多行15×4.4-60=6千米,前面一段路每小时少行12×=3千米,说明前面一段路行了6÷3=2小时, 即出发后2小时提速。
思路二:工程问题思想。
原速行驶行完全程需要60÷12=5小时,提速后提前了5-4.4=0.6小时,后面一段路的时间比原来少了1-1÷(1+)=,原来行后面一段路的时间是0.6÷=3小时,那么前一段路就是5-3=2小时,即出发后2小时提速的。
【详解】方法一:12×(1+)×4.4-60
=15×4.4-60
=6(千米)
6÷(12×)
=6÷3
=2(小时)
方法二:60÷12-4.4=0.6(小时)
1-1÷(1+)
=1-
=;
5-0.6÷=2(小时)
答:这辆车出发2小时后开始提速。
【分析】对于行程问题我们也可以通过其它的思路方法来解题,多思考找准数量关系,开拓思维。
8.6千米
【详解】上午九点上山下午1点半下山,用时4.5小时,除去休息的一个小时,上山和下山共用时3.5小时.上山速度3千米/小时,下山速度4千米/小时,若假设上下山距离为12千米的话,则上山用时4小时,下山用时3小时,总用时应为7小时,而实际用时3.5小时,则实际路程应为千米
9.600米
【分析】回家每分钟行75×(1-)=60(米),分别表示出上学、回家行1米需要的时间求出它们的差,一共相差的时间除以行1米相差的时间就是全程。
【详解】75×(1-)=60(米);
2÷( )
=2×300
=600(米)
答:小芳家到学校一共600米。
【分析】一般情况下我们都是表示单位时间内行的路程即速度,有时也可以换个思路表示单位距离所用的时间。也可尝试用其他的方法来解答。
10.360千米
【分析】思路一:假设提前的时间是 1 份,原定时间是 1÷20%+1=6 份,行100 千米后提速30%,如果原速行需要 1÷30%+1=份的时间,占总时间的 ÷6=,说明 100 千米占总路程的 1-=,两地相距 100÷=360 千米。
思路二:如果100 千米也提速 30%来行,用和提速 20%相同的时间,可以多行 100×30%=30 千米。两次的路程比就是(1+30%)∶( 1+20%)=13∶12,那么全程就是 30÷(13-12)×12=360 千米。
【详解】方法一:1÷20%+1=6;1÷30%+1=;
100÷(1-÷6)
=100÷
=360(千米)
方法二:(1+30%)∶( 1+20%)=13∶12
100×30%÷(13-12)×12
=30÷1×12
=360(千米)
答:甲、乙两地相距360千米。
【分析】解答此类变速问题,既可以从时间方面来思考,也可以通过路程方面来思考,找出跟数量100千米相关的分率信息是解题关键。
11.30千米/小时
【详解】涉及到平均速度必须知道总路程和总时间,这道题目中只知道各段路程的速度,所以我们还是要用到假设法.
解:假设上山的路程为“180个单位”(180是22.5和36的公倍数),那么下山的路程为“360个单位”.
上山的时间为
CD段所花的时间为:
那么从B到D的总时间为:
所以从B到D的平均速度为:(千米/小时)
既然从A到B,从B到D的平均速度都是30千米/小时.那么从A到D的平均速度为30千米/小时.
【分析】1、当几个速度都相等时,那么无论时间是多少,平均速度都等于这个相等的速度.2、路程有倍数关系时,可以假设路程数进行计算.
12.40千米/小时
【详解】设两地距离为:(千米),上山时间为:(小时),下山时间为:(小时),所以该车的平均速度为:(千米).
13.3.75千米/小时
【分析】在应用题里,已知几个不相等的已知数及份数,要求出总平均的数值,称为求平均数应用题。本题要用来回的总路程除以来回用的总时间求解。
【详解】10.5×2÷(10.5÷5+10.5÷3)
=10.5×2÷(2.1+3.5)
=10.5×2÷5.6
=3.75(千米/小时)
答:他往返的平均速度3.75千米/小时。
【分析】解平均数应用题,要找准总数量与总份数的对应关系。
14.5分钟
【分析】思路一:可以从如下方面进行来分析:
1.先算出路程。60×30=1800米。
2.再算后来的速度。60×+60=72米/分。
3.接着算后来需要的时间。1800÷72=25分。
4.最后算提前的时间。30-25=5分钟 。
思路二:利用工程问题思想分析:
设原来每分钟行1份的路程,后来每分钟行 1+=1.2份的路程,原来钟就行30份,提高速度后只需要30÷(1+)=25 分。则提前30-25=5分钟。
【详解】方法一:60×30÷(60×+60)
=1800÷72
=25(分)
30-25=5(分)
方法二:30÷(1+)=25(分)
30-25=5(分)
答:可以提前5分钟。
【分析】解答此题既可以按常规路程时间速度之间的关系来解答,也可按工程问题来解答,很多数学问题都是相通的。
15.60千米/小时
【详解】① 参数法:设A、B两地相距S千米,列式为S÷(2S÷48-S÷40)=60千米.
② 最小公倍法:路程2倍既是48的倍数又是40的倍数,所以可以假设路程为〔48,40〕=240千米.根据公式变形可得 240÷2÷(240÷48-240÷2÷40)=60千米.
16.2小时30分
【详解】打的来回用30分钟,那么回家=去学校=15分钟;
骑自行车上学需要1.5小时-15分钟 1小时15分;
一来回就要2小时30分.
17.57.6千米/小时
【详解】想求汽车的平均速度=汽车行驶的全程÷总时间 ,在这道题目中如果我们知道汽车行驶的全程,进而就能求出总时间,那么问题就迎刃而解了.在此我们不妨采用“特殊值”法,这是奥数里面非常重要的一种思想,在很多题目中都有应用.①把甲、乙两地的距离视为1千米,总时间为:1÷72+1÷48,平均速度=2÷(1÷72+1÷48)=57.6千米/时. ②我们发现①中的取值在计算过程中不太方便,我们可不可以找到一个比较好计算的数呢?在此我们可以把甲、乙两地的距离视为[72,48]=144千米,这样计算时间时就好计算一些,平均速度=144×2÷(144÷72+144÷48)=57.6千米/时.
18.18千米
【分析】根据题意先算出返回时的速度,因为往返的路程是相等的,总时间除以出往返1千米用的时间之和,就是甲乙两地的距离。
【详解】返回速度是12×(1+)=18千米/时,共用去4-1.5=2.5小时,则甲乙两地之间的距离是2.5÷(+)=18千米。
答:甲乙两地相距18千米
【分析】解答此题的关键是往返路程不变,用总时间除以往返1千米时间之和就是两地的距离。
19.12千米
【分析】本题主要考查学生运用代数思想解决时间问题的能力,将题中所给出的内容通过代数的形式展示出来,从而解答此题。
【详解】上山3千米/小时,平路4千米/小时,下山6千米/小时。假设平路与上下山距离相等,均为12千米,则首先赵伯伯每天共行走千米,
平路用时小时,上山用时小时,下山用时小时,
共用时小时,是实际3小时的4倍,则假设的48千米也应为实际路程的4倍,可见实际行走距离为千米。
方法二:设赵伯伯每天走平路用小时,上山用小时,下山用小时,因为上山和下山的路程相同,所以,即。由题意知,所以.因此,赵伯伯每天锻炼共行(千米),平均速度是(千米/时)。
【分析】本题解答的重点在于学生需要学会将题中所给出的已知的内容转化为代数的形式。
20.210千米,140千米
【详解】解:从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路.设从甲地到乙地的上坡路为x千米,下坡路为y千米,依题意得
①+②,得(x+y)(+)=16.5
x+y=210
将y=210-x代入①式,得
=9
解得x=140.
答:甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路.
21.离学校1000米处
【解析】略
22.156千米
【详解】解:设摩托车在普通公路上行驶了x千米,则在水泥路上行驶了(420-x)千米.根据题意列方程:
解得,x=156
答:摩托车在普通公路上行驶了156千米.
23.小时
【详解】小张上坡用时:(小时);
小王下坡用时:(小时);
小张先走平路:(千米);
小张和小王同时走平路:(小时);
相遇时间:(小时);
故答案为小时.
【分析】此题条件较复杂,注意理清思路,细细分析.本题的难点在于:当小张走完0.5千米的上坡路时,小王还没有走完2.5千米的下坡路,在小王走下坡路的同时,小张先走平路千米,这个地方比较难理解.
24.9.6千米/小时
【详解】方法一:用设数代入法,设从山脚至山顶路程为48千米,下山用时为(小时),共用时(小时),路程为(千米),平均速度为(千米/小时)
方法二:设路程为单位1,上山用时为,下山用时为,共用时,距离为,平均速度为(千米/小时).
25.米/秒
【详解】假设上坡、走平路及下坡的路程均为24米,那么总时间为:24÷4+24÷6+24÷8=13(秒),过桥的平均速度为(米/秒).
26.48千米/时
【分析】用去时的速度乘时间求出两地之间的距离,用两地之间的距离除以返回的时间即可求出返回的速度。
【详解】36×4÷3
=144÷3
=48(千米/时)
答:返回时的速度是48千米/时。
27.倍
【详解】设从家到学校的路程为S,上学时间为T,那么平路上的速度为,那么下坡的速度为,下坡时间为:,所以上坡所花的时间为:,所以上坡的速度为:.所以上坡速度是平路速度的倍.
28.18米/秒
【详解】假设上坡、平路及下坡的路程均为66米,那么总时间=66÷11+66÷22+66÷33=6+3+2=11(秒),过桥的平均速度=66×3÷11=18(米/秒)
29.160千米
【分析】因为汽车从甲地开往乙地又从乙地返回甲地,所走距离相同,所以时间比=速度的反比.据此可得,去时所用时间:返回所用时间=50:40=5:4. 去时所用时间为5份,返回所用时间为4份.去时所用时间比返回所用时间进多一份是48分钟,进而可得去时的时间为:48×5=240分钟=4小时;甲乙两地之间的路程为:4×40=160千米
【详解】去时所用时间:返回所用时间=50:40=5:4
去时所用时间:48×5==240(分钟)=4(小时)
甲乙两地之间的路程:4×40=160(千米)
30.18米
【详解】大头儿子和小头爸爸的速度和:(米/分钟),小头爸爸的速度:(米/分钟),大头儿子的速度:(米/分钟).
31.慢车每小时走19千米
【详解】快车6分钟行驶的距离是:24000×=2400(米)
中车10分钟行驶的距离是:20000×=(米),
骑车人每分钟走(-2400)÷(10-6)=(米),
慢车在12分钟走过2400-×6+×12=3800(米),
慢车每小时可以行驶:3800÷12×60=19000(米)
答:慢车每小时走19千米.
32.9小时
【详解】假设总路程为6千米,那么去时用(小时),回来用(小时),来回共用5小时,而题目中是15小时,是假设时间5小时的3倍,那么总路程就是(千米).所以,去时用了(小时).
33.
【分析】因为已知此人走三段路程的时间之比,所以要求出此人走完全程的时间,只要根据已知条件求出此人走上坡路所用的时间,从而只要求出此人上坡的速度和上坡的路程即可.又知道全程30公里且上坡、平路和下坡三段路程比是1∶2∶3,从而求出上坡的路程.
【详解】上坡路的路程为
走上坡路所用的时间为
上坡路所用时间与全程所用时间之比为
走完全程所用的时间为
答:此人走完全程共用.
34.6千米/小时
【详解】① 参数法:设全程的的一半为S千米,前一半时间为,后一半时间为,根据公式平均速度=总路程÷总时间,可得(千米).
②题目中没有告诉我们总的路程,给计算带来不便,仔细想一想,前一段路程与后一段路程相等,总路程是不影响平均速度的,我们自己设一个路程好了,路程的一半既是12的倍数又是4的倍数,所以可以假设路程的一半为(千米),来回两段路,每段路程12千米,那么总路程是: (千米),总时间是:(小时),所以平均速度是:(千米/小时).在这种特定的题目中,随便选一个方便的数字做总路程并不是不科学的,因为我们可以把总路程设为“单位1”,这样做无非是设了“单位24”,也就是把所有路程扩大了24倍变成整数,没有任何问题,不论总路程设成多少,结论都是一样的,大家可以验证一下.
35.576千米/小时
【详解】设两地距离为:(千米),从甲地到乙地的时间为:(小时),从乙地到甲地的时间为:(小时),所以该飞机的平均速度为:(千米).
36.厘米/分钟
【详解】假设每条边长为200厘米,则总时间=200÷50+200÷20+200÷40=4+10+5=19(分钟),爬行一周的平均速度=200×3÷19=(厘米/分钟).
37.60千米/小时
【分析】根据题意,可知剩余路程为300-120=180(千米),这辆车路上花的总时间为300÷50=6(小时),前120千米已经花了120÷40=3(小时),所以剩下的180千米的路程只能在3小时内走完,再用剩下的路程除以3小时即可。
【详解】300-120=180(千米);
300÷50=6(小时);
180÷(6-120÷40)
=180÷3
=60(千米/小时);
答:剩下的路程应该以60千米/小时的速度行驶。
【分析】求出剩下的路程和还需要的时间是解答本题的关键。
38.米
【详解】在整个行程中,车是从甲地到乙地,恰好过了一个全程,所以、两人步行的路程合起来也恰好是一个全程.而步行的路程加上骑车的路程也是一个全程,所以步行的路程等于骑车的路程,骑车的路程等于步行的路程.
设步行米,骑车米,那么步行米,骑车米.由于两人同时到达,故所用时间相同,得:,可得.
不妨设步行了200米,那么骑车的路程为300米,所以从甲地到乙地的平均速度是
(米/分).
39.11:9
【详解】题目中只给出了速度比,而没有任何时间、路程等量,所以这道题目中至少应该假设两个量.
解:根据题中已给条件,可将原定速度设为13,那么前半路程速度为11,再假设总路程的一半的长度为143,那么原定总时间为143×2÷13=22,前半段时间为143÷11=13,后半段时间为22-13=9,所以后半段速度为143÷9=,实际平均速度与原定速度的比为:.
40.216千米
【详解】回来用时:15÷(1+1.5)=6(小时)
去时用:15-6=9(小时)
12×6=72(千米)
设汽车速度为X,根据题意列方程:
9X=6X+72
X=24
两地距离:6X+72
=6×24+72
=216(千米)
41.20千米
【详解】15×÷ =20(千米)
42.240千米
【详解】返回时间6-1=5小时,往返时间比=6:5;往返的速度比=5:6
8÷(6-5)×5×6=240(千米)
43.30千米
【分析】返回的速度是25×(1-)=15 千米/时,往返1千米需要+=小时,现在用3.2小时可以往返3.2÷=30千米。
【详解】25×(1-)=15(千米);
3.2÷(+)
=3.2÷
=30(千米)
答:他家到工厂相距30千米。
【分析】往返的路程是一样的,知道总时间求出往、返1千米时间之和是解题关键。
44.3小时
【详解】因为路程速度时间,来回的路程是一样的,速度不同导致所用的时间不同,同时,速度与时间的乘积是不变的,因为去时的速度与回来时的速度之比为2∶3,所以去时的时间与回来时的时间比为3∶2,把去时用的时间看作3份,那么回来时所用时间为2份,它们的和为5,由和倍关系式,去时所用的时间为:
5÷(2+3)×3
=5÷5×3
=3(小时)
答:小明去时用了3小时。
45.4.5小时
【分析】计划每小时行 ,后来的速度变为×()= ,实际用的时间是6+1=7小时,假设7小时的速度都是,则行驶了全程的,比实际少行驶全程的1-=,除以计划速度与实际速度之差就是故障前行驶的时间。
【详解】×()=
(1-×7)÷(-)
=÷
=4.5(小时)
答:出发后4.5小时减的。
【分析】此题用假设法找出假设和实际行驶的路程差,并明确路程相差的原因是解题关键。
46.(1)40分钟 (2)1千米
【详解】(1)小张从 A到 B需要 1÷6×60= 10(分钟);小王从 D到 C也是下坡,需要 2.5÷6×60=25(分钟);当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了=1(千米)
因此在 B与 C之间平路上留下 3-1=2(千米)由小张和小王共同相向而行,直到相遇,所需时间是2 ÷(4+4)×60=15(分钟).
从出发到相遇的时间是25+15=40(分钟).
(2)相遇后,小王再走30分钟平路,到达B点,从B点到 A点需要走 1÷2×60=30分钟,即他再走 60分钟到达终点.
小张走15分钟平路到达D点,45分钟可走=1.5(千米)
小张离终点还有2.5-1.5=1(千米).
答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米.
47.400千米
【详解】1800÷360=5(小时)5-1=4(小时)1800×2÷(5+4)=400(千米)
48.倍
【分析】本题主要考查学生运用代数思想解决时间问题的能力,将题中所给出的内容通过代数的形式展示出来,从而解答此题。
【详解】方法一:设路程为80,则上坡和下坡均是40。设走平路的速度是2,则下坡速度是4。走下坡用时间,走平路一共用时间,所以走上坡时间是,走与上坡同样距离的平路时用时间:。因为速度与时间成反比,所以平路速度是上坡速度的(倍)。
方法二:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间,上坡时间,上坡速度,则平路速度是上坡速度的(倍)。
方法三:因为距离和时间都相同,所以路程上坡速度路程路程,得上坡速度,则平路速度是上坡速度的(倍)。
方法四:设总路程为2S,平路速度为v,那么平路时间为2S÷v,下坡时间为:S÷2v。上坡时间为:2S÷v-S÷2v。上坡速度就是:S÷(2S÷v-S÷2v)=23v,则平路速度是上坡速度的v÷23v=1.5(倍)。
【分析】本题解答的重点在于学生需要学会将题中所给出的已知的内容转化为代数的形式。
49.270千米
【分析】思路一:盈亏问题思想
返回每小时多行 15×=3千米,返回每小时行 15+3=18千米,如果继续行3小时,可以多行3×18=54千米,说明去的时间是54÷3=18小时。
因此两地之间的距离是15×18=270千米。
思路二:工程问题思想
去的时间看作单位1,返回的时间是 1÷(1+)= ,3小时就相当于1-=, 则去用的时间是3÷=18小时。两地之间的距离是15×18=270千米。
思路三:设数的思想
返回每小时行15×(1+)=18千米,往返1千米少用-=小时, 现在少用3小时,需要往返3÷=270千米。
【详解】方法一:[(15×+15)×3] ÷3×15
=[18×3]÷3×15
=18×15
=270(千米)
方法二:1-1÷(1+)
=1-
=
3÷×15
=18×15
=270(千米)
方法三:15×(1+)=18(千米)
3÷(-)
=3÷
=270(千米)
答:A、B两地的距离是270千米。
【分析】对于行程问题我们也可以通过其它的思路方法来解题,多思考找准数量关系,开拓思维。
50.12千米
【详解】方法一:路程=总时间×平均速度,先求出平均速度,设上下山路程为10千米,10×2÷(10÷2.5+10÷4)=20÷6.5=40/13(千米/时)所以总路程:40/13×3.9=12(千米).
方法二:设上山用小时,下山用小时,所以列方程为:,解得,所以小明往返共走:(千米).
51.货车的速度是45千米/时,客车的速度是75千米/时
【分析】考查相遇问题的基本数量关系以及按比例分配的知识。
【详解】根据相遇问题中,总路程÷时间=速度和,可得480÷4=120千米。再结合题意“货车和客车的速度比是3∶5”,可得货车的速度120×=45千米/时,客车的速度120×=75千米/时。
解题方法不唯一。
【分析】可以先求出速度和,再按比例分配求各自的速度;也可以先按比例分配求出各自行驶的路程,再求出各自的速度。
52.2小时
【分析】本题主要考查学生运用方程思想解决实际问题的能力,将题中所给出的内容通过方程的形式展示出来,从而解答此题。
【详解】方法一:设BC距离为:(千米),所以CD距离为(千米),那么B-C-D的平均速度为:
(84+168)÷(84÷28+168÷42)
=252÷(3+4)
=252÷7
=36(千米/小时)
和平路的速度恰好相等,说明A-B-C-D的平均速度为36千米/小时,所以从A-D共需要的时间为:(小时)
方法二:设上山路为千米,下山路为千米,则上下山的平均速度是:
(x+2x)÷(x÷28+2x÷42)
=3x÷(+ )
=36(千米/时)
正好是平地的速度,所以行总路程的平均速度就是36千米/时,与平地路程的长短无关。因此共需要72÷36=2(小时)。
【分析】本题解答的重点在于学生需要学会将题中所给出的已知的内容转化为方程的形式。
53.2.4小时
【详解】设上山路为x千米,下山路为2x千米,则上下山的平均速度是:(x+2x)÷(x÷22.5+2x÷36)=30(千米/时),正好是平地的速度,所以行AD总路程的平均速度就是30千米/时,与平地路程的长短无关.因此共需要72÷30=2.4(时).
54.540千米
【分析】构造均提前1小时的速度比和路程比相等的关系。
如果速度为原来的(1-10%)÷(1-10%×2)=,就会提前1小时。如果速度为原来的1+20%=,也提前1小时能多行 180×20%=36千米。所以甲乙两地之间的距离是36÷(÷-1)=540千米。
【详解】(1-10%)÷(1-10%×2)=;1+20%=
180×20%÷(÷-1)
=36÷(÷-1)
=36×15
=540(千米)
答:甲、乙两地之间的距离是540千米。
【分析】此题为较复杂的变速问题,用假设法找路程和速度之间的关系。
55.米/秒
【详解】要求平均速度必须知道总路程和总时间,在总路程未知的情况下,可以假设总路程,化未知为已知.
解:假设上坡、平路、下坡的长度都是“1个单位”:那么上坡、平路、下坡所花时间依次为:;;.
所花的总时间为:,总路程为:,所以他过桥的平均速度为:(米/秒)
【分析】本道题中假设的单位长度可以随意,例如可以假设上坡、平路、下坡的长度为“24个单位”,因为24是4、6、8的最小公倍数,所以计算出来各段时间都是整数,这样更方便于计算.
56.30分钟
【详解】一个单程步行比骑车多用(分钟),骑车单程(分钟),往返骑车的时间(分钟).
模块二、终(中)点问题
57.36千米
【详解】解:设甲、乙两地相距x千米,来回就走了2x千米,由题意可得:
+=5
x=5
x=18
2x=2×18=36(千米)
相关试卷
这是一份(小升初典型奥数)分数与百分数应用题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版),共34页。
这是一份(小升初典型奥数)典型应用题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版),共31页。
这是一份(奥数典型题)归一归总问题--2023-2024学年六年级下册小升初数学思维拓展,共17页。