终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    (小升初典型奥数)比例应用题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版)

    立即下载
    加入资料篮
    (小升初典型奥数)比例应用题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版)第1页
    (小升初典型奥数)比例应用题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版)第2页
    (小升初典型奥数)比例应用题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版)第3页
    还剩34页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (小升初典型奥数)比例应用题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版)

    展开

    这是一份(小升初典型奥数)比例应用题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版),共37页。试卷主要包含了所以报考总人数是等内容,欢迎下载使用。

    2.在某商店购买A、B两种类型的钢笔共100支,已知A钢笔每支3元,B钢笔每支7元,并且购买A、B两种钢笔所用的钱数一样多,求A、B两种钢笔各买了多少支?
    3.一架飞机从甲城飞往乙城,每小时飞行800千米.返回时,每小时飞行速度减慢到700千米,比去时多用了0.3小时.甲、乙两城相距多少千米?
    4.分子、分母之和为23,分母增加19以后,得到一个新的分数,把这个分数化为最简分数是,原来的分数是几分之几?
    5.猎犬发现在离它10米远的前方有一只狂跑着的野兔,立刻追赶.猎犬的步子大,它跑2步的路程,兔子要跑3步;但是兔子的动作快,猎犬跑3步的时间,兔子能跑4步.问猎犬至少要跑多少米方能追上野兔?
    6.甲乙两人同时从A、B两地出发,甲每分钟行80米,乙每分钟行60米,两人在途中C点相遇.如果甲晚出发7分钟,两人将在途中D处相遇,且A、B中点E到C点的距离是到D点距离的2倍.求A、B两地间距离.
    7.甲班与乙班学生同时从学校出发去15千米外的公园游玩,甲、乙两班的步行的速度都是每小时4千米.学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离是多少千米?
    8.某学校入学考试,参加的男生与女生人数之比是. 结果录取91人,其中男生与女生人数之比是.未被录取的学生中,男生与女生人数之比是. 问报考的共有多少人?
    9.甲、乙两辆汽车同时从A、B两地相向而行,甲行到全程的 的地方与乙相遇.甲每小时行30千米,乙行完全程需7小时.求A、B两地之间的路程.
    10.甲、乙两人在10年前的年龄比为2:3,现在他俩的年龄比为3:4,那么10年后他俩的年龄比为多少?
    11.一辆车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1小时到达;如果原速行驶100千米后,再将车速提高30%,也比原定时间提前1小时到达,求甲、乙两地距离.
    12.甲、乙两车分别从A、B两地同时出发,相向而行,甲车每小时行56千米,乙车每小时行40千米.当乙车行至全程的时,甲车已超过中点12千米,A、B两地相距多少千米?
    13.甲、乙两人分别从A、B两地相向而行,甲行了全程的,正好与乙相遇,已知甲每小时行4.5千米,乙行完全程要5.5小时,求A、B两地相距多少千米?
    14.有一些球,其中红球占,当再放入8个红球后,红球占总球数的,问现在共有多少球?
    15.王晓峰的书架有上、中、下三层.上层存书本数与存书总数的比是5:21.如果从下层拿18本书放到上层,则每层书架的存书本数相等.这个书架共有存书多少本?
    16.总路程是50千米,上坡、平路、下坡的路程比为1:2:3,行各段的时间比4:5:6,上坡速度是3km/h,求行完全程的时间.
    17.甲、乙两项工程分别由一、二队来完成。在晴天,一队完成甲工作要12天,二队完成乙工程要15天;在雨天,一队的工作效率要下降,二队的工作效率要下降。结果两队同时完成工作,问工作时间内下了多少天雨?
    18.如图,在长为490米的环形跑道上,A、B两点之间的跑道长50米,甲、乙两人同时从A、B两点出发反向奔跑。两人相遇后,乙立刻转身与甲同向奔跑,同时甲把速度提高了25%,乙把速度提高了20%。结果当甲跑到点A时,乙恰好跑到了点B。如果以后甲、乙的速度和方向都不变,那么当甲追上乙时,从一开始算起,甲一共跑了多少米?
    19.航模一班和航模二班的人数比为8∶7,如果将航模一班的8名同学调到航模二班去,那么航模一班与航模二班人数比为4∶5,原来这两班各有多少人?
    20.某工地用种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为 ,速度比为,运送土方的路程之比为 ,三种车的辆数之比为。工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到 天后,另一半甲种车才投入工作,一共干了天完成任务。那么,甲种车完成的工作量与总工作量之比是多少?
    21.小明和小强原有的图画纸之比是4∶3,小明又买来15张.小强用掉了8张,现有的图画纸之比是5∶2.问原来两人各有多少张图画纸?
    22.张家与李家的收入钱数之比是8∶5,开支的钱数之比是8∶3,结果张家结余240元,李家结余270元.问每家各收入多少元?
    23.甲乙两车分别从A,B两地出发,相向而行。出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米。问:A,B两地相距多少千米?
    24.如图3所示,甲齿轮有60个齿,乙齿轮有36个齿,为了使甲轮转动15圈带动乙轮转动8圈,在甲、乙齿轮间连接一个丙齿轮.丙齿轮是由固定在一起的大、小两个齿轮组成的复合齿轮.丙轮上大轮与甲轮啮合,小轮与乙轮啮合,求丙轮上大、小齿轮数最少应分别是多少?
    25.甲、乙、丙三种糖果每千克价分别是22元、30元、33元.某人买这三种糖果,在每种糖果上所花钱数一样多,问他买的这些糖果每千克的平均价是多少元?
    26.加工某种零件,甲分钟加工个,乙分钟加工个,丙分钟加工个.现在三人在同样的时间内一共加工个零件.问:甲、乙、丙三人各加工多少个零件?
    27.甲、乙两个工地上原来水泥袋数的比是2:1,甲地用去125袋后,甲、乙两工地水泥袋数的比为3:4,甲、乙两工地原有水泥多少袋?
    28.甲乙两个班共种树若干棵,已知甲班种的棵数的等于乙班种的棵数的,且乙班比甲班多种树棵,甲、乙两个班各种树多少棵?
    29.某商场有一部自动扶梯匀速由下而上运动,甲乙二人都急于上楼办事,因此在扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登梯速度是甲的2倍(单位时间乙登梯级数是甲的2倍),他登了60级后到达楼上,求自动扶梯的级数?
    30.有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?
    31.商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下.如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级.
    32.、、三项工程的工作量之比为,由甲、乙、丙三队分别承担。三个工程队同时开工,若干天后,甲完成的工作量是乙未完成的工作量的二分之一,乙完成的工作量是丙未完成的工作量的三分之一,丙完成的工作量等于甲未完成的工作量,则甲、乙、丙队的工作效率的比是多少?
    33.有两块地共90公亩,第一块地的和第二块地的种茄子,两块地余下的共45公亩种西红柿.求第一块地有多少公亩?
    34.一个爱斯基摩人乘坐套有只狗的雪橇赶往朋友家,在途中第一天,雪橇以爱斯基摩人规定的速度全速行驶,一天后,有只狗扯断了缰绳和狼群一起逃走了,于是剩下的路程爱斯基摩人只好用只狗拖着雪橇,前进的速度是原来的,这使他到达目的地的时间比预计的时间迟到了天.事后,爱斯基摩人说:“逃跑的狗如果能再拖雪橇走千米,那我就能比预计时间只迟到一天.”请问,爱斯基摩人总共走了多少千米路程?
    35.有一个长方体,长与宽的比是,宽与高的比是。已知这个长方体的全部棱长之和是厘米,求这个长方体的体积。
    36.在商场里甲开始乘自动扶梯从一楼到二楼,并在上向上走,同时乙站在速度相等的并排扶梯从二层到一层.当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,那么,自动扶梯不动时从下到上要走多少级?
    37.小军走的路程比小红多,而小红行走的时间比小军多,小红与小军的速度比是多少?
    38.某高速公路收费站对于过往车辆收费标准是:大型车元,中型车元,小型车元.一天,通过该收费站的大型车和中型车数量之比是,中型车与小型车之比是,小型车的通行费总数比大型车多元.(1)这天通过收费站的大型车、中型车、小型车各有多少辆?(2)这天的收费总数是多少元?
    39.一架飞机所加的油最多能够航行9小时,某天这架飞机要外出执行任务,去时顺风,每小时能飞900千米,返回时逆风每小时能飞行720千米,问飞机最多飞出多少千米就必须返航才能安全回家?
    40.一条路全长为30公里,分为上坡、平路和下坡三段,各段路程长的比是1∶2∶3,某人走各段路程所用的时间之比是4∶5∶6,已知他上坡的速度是每小时3公里.问此人走完全程共用了多少时间?
    41.学校四五六年级共有615名学生,已知六年级学生的,等于五年级学生的,等于四年级学生的.这三个年级各有多少名学生?
    42.一个容器内注满了水。将大、中、小三个铁球这样操作:第一次,沉入小球;第二次,取出小球,沉入中球;第三次,取出中球,沉入大球。已知第一次溢出的水量是第二次的3倍,第三次溢出的水量是第一次的2倍。求小、中、大三球的体积比。
    43.甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有40米,丙离终点还有50米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?
    44.一块长方形铁板,宽是长的.从宽边截去厘米,长边截去以后,得到一块正方形铁板.问原来长方形铁板的长是多少厘米?
    45.两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A、B两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?

    46.小张、小李和小王于某日上午分别步行、骑自行车和开汽车从A地出发沿公路向B地匀速前进.已知小李比小张晚1小时出发,小王比小李晚45分钟出发.他们三人恰在中途某地相遇.若小李比小张早到达B地24分钟,则小王比小张早多少分钟.
    47.如图1所示,甲、乙、丙三个齿轮啮合,当甲轮转7圈时,乙轮恰好转8;圈;当乙轮转5圈时,丙轮恰好转14圈,求当甲轮转5圈时,丙轮转几圈?
    48.甲、乙两个长方形,它们的周长相等.甲的长与宽之比是3∶2,乙的长与宽之比是7∶5.求甲与乙的面积之比.
    49.甲本月收入的钱数是乙收入的,甲本月支出的钱数是乙支出的,甲节余240元,乙节余480元.甲本月收入多少元?
    50.甲骑车自A向B驶去,2小时后,乙步行由A向B走去,乙走出2小时后甲到B,此时乙距B地32千米;甲在B休息2小时30分钟又原路返回,经过1小时与一直步行向B走的乙相遇,问此时乙距B地多少千米?
    51.水果店运来苹果和香梨一共210千克,香梨的质量是苹果的.运来香梨有多少千克?
    52.有一个长方体,长和宽的比是,宽与高的比是.表面积为,求这个长方体的体积.
    53.小明沿着向上移动的自动扶梯从顶向下走到底,他走了150级,他的同学小刚沿着自动扶梯从底向上走到顶,走了75级,如果小明行走的速度是小刚的3倍,那么可以看到的自动扶梯的级数是多少?
    54.李华每天上学步行5分钟以后,跑步2分钟恰好到校.有一天,他步行了2分钟就开始跑步,结果早到了1分40秒,他跑步的速度是步行速度的多少倍?
    55.北京中学生运动会男女运动员比例为,组委会决定增加女子艺术体操项目,这样男女运动员比例变为;后来又决定增加男子象棋项目,男女比例变为,已知男子象棋项目运动员比女子艺术体操运动员多人,则总运动员人数为多少?
    56.一个正方形的一边减少,另一边增加 米,得到一个长方形,这个长方形的面积与原正方形面积相等。原正方形的边长是多少米?
    57.有两堆棋子, A堆有黑子 350个和白子500个, B堆有黑子400个和白子100个.为了使A堆中黑子占A堆的,B堆中黑子占.要从B堆中拿到A堆黑子、白子各多少个?
    参考答案:
    1.252棵
    【详解】时间与工效成反比,甲比乙所需时间多,即甲的时间是乙的倍.
    设甲、乙的工作效率为x与y
    因为同时合作,所以甲、乙植树的总量比也是3:4,即可以将整个数量分成7份,那么甲植了其中3份的树,而乙植了4份的树.
    乙比甲多1份,而又知乙比甲多植36棵
    所以总共的棵数(棵)
    2.A:70支 B:30支
    【分析】由已知,对A、B两种钢笔来说,所用的钱数是一样多的,由这个不变量可知,购买钢笔的数量与其单价成反比例关系.
    【详解】由已知,A、B两种钢笔的单价之比是3∶7,并且它们所用总钱数一样多,根据购买数量与其单价成反比例关系,可以知道A、B两种钢笔的数量之比为7∶3,所以A钢笔有,B钢笔有100-70=30(支).
    答:买进A、B两种钢笔的数量分别是70支和30支.
    3.1680千米
    【详解】往返的速度比是800:700=8:7,往返的时间比=7:8;
    0.3÷(8-1)×7×800=1680(千米)
    4.
    【详解】分子=(23+19)×=7,
    分母=(23+19)×=35,
    原来的分数是=,
    答:原来的分数是.
    5.90米
    【分析】从猎犬开始追兔子到追上兔子,猎犬和兔子所用的时间相等,即时间一定,因此,它们跑的速度与距离成正比例的关系.要求出猎犬跑的距离,关键是求出猎犬与兔子的速度之比.
    因为兔子3步距离等于猎犬2步距离,不妨设兔子一步为2距离单位,则猎犬一步为3距离单位;又因为兔子4步的时间等于猎犬3步的时间,所以可设兔子每跑一步需3时间单位,猎犬每跑一步需4时间单位,根据有
    所以兔子与猎犬的速度之比为
    【详解】解:兔子与猎犬的速度之比为
    可设猎犬至少要跑过x米才能追到兔子,则此时兔子跑过(x-10)米,根据时间一定,速度和距离成正比,可列出比例式
    8∶9=(x-10)∶x
    8x=9(x-10)
    x=90
    答:猎犬至少要跑过90米才能追上兔子.
    6.2240米或6720米
    【详解】甲晚出发7分钟,也就是乙先走了60×7=420米,两人共同行走的时间也减少了.对应的路程和也发生了变化.
    前后两次二人的相遇路程和相差420千米,那么前后两次相遇时间相差为420÷(80+60)=3(分钟),
    而本来这三分钟甲能多走80×3=240(米),
    这就说明C点与D点之间的距离为240米,由条件“A、B中点E到C点的距离是到D点距离的2倍”可以得到中点到C、D两点之间的距离.不过这里要分两种情况:
    (一)中点E在C、D之间,那么ED、EC的距离和为240米,EC的距离为:240÷(2+1)×2=160米
    也就是说甲乙同时出发后的相遇点距离中点160米,即甲比乙多走了320米.两人相遇所花的时间为:320÷(80-60)=16(分).A、B之间的距离为:(80+60)×16=2240(米).
    (二)C、D在E点的同一侧,那么ED、EC的距离差为240米,EC的距离为:240÷(2-1)×2=480(米),也就是说甲乙同时出发后的相遇点距离中点480米,即甲比乙多走了960米,两人相遇所花的时间为`:960÷(80-60)=48(分).A、B之间的距离为:(80+60)×48=6720(米).
    综上所述,A、B两地之间距离为2240米或6720米.
    【分析】如果只涉及到距离关系,没有提到位置关系,而且这些点在同一条直线上,那么就不只有一种位置关系.
    7.2千米
    【详解】关键是找到步行距离、汽车行驶距离、总路程之间的比例关系.
    由于两班速度相同,所以要使时间最少,必须同时出发,同时到达,因此行走的路程要相同,即AD=CB,画图如下:
    在某一班行走BC的时间内,车行走的路程就是C—A—B,即CB+BA+AB,这样得出CB︰(CB+BA+AB)=4︰48=1︰12
    该比例式可以化为:CB︰BA=1︰=1︰5.5
    所以CB和总路程的比为1︰(1+5.5+1)=1︰7.5=2︰15
    CB的长度为(千米)
    所以每个班步行的距离为2千米.
    【分析】此题的解决主要有两个关键点:
    1,两个班的行走路程一样.
    2,找出步行与汽车在相同时间内行走的路程,根据路程与速度成正比的关系得出相应路程的比例关系,最终求出答案.
    8.119人
    【详解】(法1)录取的学生中男生有人,女生有(人),先将未录取的人数之比变成,又有(人),所以每份人数是(人),那么未录取的男生有(人),未录取的女生有(人).所以报考总人数是(人)。
    (法2)设未被录取的男生人数为人,那么未被录取的女生人数为人,由于录取的学生中男生有人,女生有(人),则,解得.所以未被录取的男生有12人,女生有16人.报考总人数是(人)。
    9.280千米
    【分析】①甲走了全程的,那么乙走了全程的1-=;②乙行完全程需7小时,所以乙一小时行驶全程的.综合①②可知相遇时甲、乙两辆汽车行驶了÷=4小时.甲每小时行30千米,4小时行驶了30×4=120千米,是全程的,所以甲、乙两地间的距离是120÷=280千米
    【详解】相遇是所用的时间:(1-)÷(1÷7)=4(小时)
    相遇时甲所走的路程:30×4=120(千米)
    A、B两地之间的路程:120÷=280(千米)
    答:A、B两地之间的路程是280千米.
    10.4:5
    【详解】设10年前甲的年龄为岁,则当时乙的年龄为岁,那根据现在两人的年龄比可得方程:,等式两边前后项交叉相乘可得,解得,所以10年前甲的年龄为20岁,乙的年龄为30岁,10年后两人分别是40岁、50岁,10年后两人的年龄比为4:5.
    11.360千米
    【详解】题目给出的距离信息只有100千米一条,我们应当找到驾车行驶100千米的总时间.
    车速提高20%,那么前后两次的速度比为5︰6,所以两次所用的时间比为6︰5,所花的时间减少1小时,由此可求原计划所花时间为(小时),汽车提速后从甲地到乙地只用5小时,这辆车如果提速30%,提速前后的速度比为10︰13,那么这辆车行驶相同距离所花的时间为13︰10,那么如果能将所花时间缩短1小时,则提速后行驶的时间应该为:(小时),所以原速行驶100公里所花的时间为:(小时),即这辆车原来的速度为:(千米/小时),甲乙两地的距离为:(千米).
    【分析】此题是利用比例解行程问题非常经典的题型,事实上题目中给出的条件非常适合用比例法的应用,首先有前后的速度比例关系,其次有时间差.“比例+两者之一或两者和与差”的考题模式是非常常见的.它对应的解题模式是“比例转化+按比例分配(已知两者之一或两者和与差分别求两者)”.
    12.200千米
    【分析】因为两车行驶的时间一定,所以速度与路程成正比例,根据甲、乙速度比,可推知路程比,根据乙行了全程的,可以求出甲行了全程的几分之几,再根据甲车超过中点12千米,即与全程的的差是12千米.最后可求出A、B两地相距多少千米.
    【详解】甲车速度:乙车速度=56:40=7:5
    甲车路程:乙车路程=7:5
    甲行的路程:×=
    全程:12÷(-)=200(千米)
    答:A、B两地相距200千米.
    13.29.7千米
    【分析】因为两车行驶的时间一定,所以速度与路程成正比例,根据甲、乙路程比,可推知速度比及所用时间比,根据甲行了全程的,可以求出甲行了全程1-=、甲与乙的速度比为5:6.再根据“距离相同,速度比=时间的反比”.最后可求甲行完全程所用的时间5.5×=6.6小时,再根据“速度×时间=距离”可得A、B两地相距6.6×4.5=29.7千米.
    【详解】甲路程:乙路程=:(1-)=5:6
    甲速度:乙速度=5:6
    甲、乙两人走完全程所用的时间比:6:5
    走完全程甲所用的时间为5.5×=6.6
    A、B两地相距:6.6×4.5=29.7(千米)
    答:A、B两地相距29.7千米.
    14.224个
    【分析】本题的特点是两个数量中,有一个数量没有变,即其他球的数量没有改变.抓住这个不变量解题.
    【详解】增加8个红球后,红球与其他球数量之比是5∶(14-5)=5∶9
    在没有球增加时,红球与其他球数量之比是1∶(3-1)=1∶2=4.5∶9
    因此8个红球是5-4.5=0.5(份)
    现在总球数是8×=224(个)
    答:现在共有球224个.
    15.189本
    【详解】18÷(-)=189(本)
    16. h
    【详解】总路程等于50,上坡、平路、下坡路程的比为1:2:3,所以上坡路程为 千米.又因为上坡速度为3km/h,所以上坡时间
    (h)
    又因为各段时间比为4:5:6,所以总时间为
    (h)
    答:总时间为h
    【分析】行程问题、比例问题
    17.10个
    【分析】先求出晴天时甲、乙的工作效率,再计算雨天时甲、乙的工作效率,求出晴天、雨天甲、乙的工作效率的关系;由于两队同时开工、同时完工,可以求出晴天和雨天之比,然后再计算具体的天数。
    【详解】在晴天,一队、二队的工作效率分别为和,一队比二队的工作效率高;
    在雨天,一队、二队的工作效率分别为和,二队的工作效率比一队高;
    由知,3个晴天5个雨天,两个队的工作进程相同,此时完成了工程的,所以在施工期间,共有6个晴天10个雨天。
    答:工作时间内下了10天雨。
    【分析】本题考查的是工程问题,这里将工程问题与比例问题相结合,求出晴天和雨天的天数比是解题的关键。
    18.2690米
    【分析】相遇后乙的速度提高20%,跑回B点,即来回路程相同,乙速度变化前后的比为5︰6,所以所花时间的比为6∶5。设甲在相遇时跑了6单位时间,则相遇后到跑回A点用了5单位时间。设甲原来单位时间行程V甲,由题意得:从A点到相遇点路程为40×6=240,所以 V乙=(490-50-240)÷6=(米)。然后再求出两人速度变化后各自的速度;从相遇点开始,甲追上乙时,甲比乙多行一圈,进而求出甲一共跑的路程,解决问题。
    【详解】以速度变化前后的比为1∶(1+20%)
    =5∶6
    所以所花时间比为6∶5
    设甲原来每单位时间的速度V甲,由题意的:
    6V甲+5×V甲×(1+25%)=490
    6V甲+5×V甲×1.25=490
    6V甲+6.25V甲=490
    12.25V甲=490
    V甲=490÷12.25
    V甲=40(米)
    从A点到相遇点路程为:40×6=240(米)
    所以V乙为:(490-50-240)÷6
    =(440-240)÷6
    =200÷6
    =(米)
    两人速度变化后,甲的速度为:40×(1+25%)
    =40×1.25
    =50(米)
    乙的速度为:×(1+20%)
    =×1.2
    =40(米)
    从相遇点开始,甲追上乙时,甲比乙多行了一圈,所以甲一共跑了:
    490÷(50-40)×50+240
    =490÷10×50+240
    =49×50+240
    =2450+240
    =2690(米)
    答:甲一共跑了2690米。
    【分析】本题属于环形跑道问题,有一定难度,应认真分析,求出甲乙二人速度变化前后的速度就解答本题的关键。
    19.一班有48名,二班有42名
    【详解】8+7=15 4+5=9 8÷(-)=90(人) 90×=48(名) 90×=42(名)
    20.32:79
    【详解】由于甲、乙、丙三种卡车运送土方的路程之比为,速度之比为 ,所以它们运送次所需的时间之比为 ,相同时间内它们运送的次数比为:。在前天,甲车只有一半投入使用,因此甲、乙、丙的数量之比为 .由于三种卡车载重量之比为,所以三种卡车的总载重量之比为。那么三种卡车在前天内的工作量之比为:。在后 天,由于甲车全部投入使用,所以在后天里的工作量之比为 。所以在这天内,甲的工作量与总工作量之比为: 。
    21.原来小明40张,小强30张
    【详解】解法一:4∶3=20∶15
    5∶2=20∶8
    假设小强也买来15×=(张),那么变化后的比仍应是20:15,但现在是20∶8.
    因此这个比的每一份是:(+8)(15-8)=
    小明现有:20×=55(张),原有55-15=40(张)
    小强现有:8×=22(张),原有22+8=30(张)
    答:原来小明有40张,小强有30张.
    解法二:设原来小明有4“份”,小强有3“份”.把小明现有的图画纸张数乘2,小强现有的图画纸张数乘5,所得到的两个结果相等.我们可以画出如下示意图:
    从图上可以看出,3×5-4×2=7(份)相当于图画纸15×2+8×5=70(张).
    因此每份是10张,原来小明有40张,小强有30张.
    22.张家收入720元,李家收入450元
    【详解】解一:我们采用“假设”方法求解.
    他们开支的钱数之比也是8∶5,结余的钱数之比也是8∶5时,张家结余240元,李家应结余x元.有
    240∶x=8∶5,x=150(元)
    实际上李家结余270元,比150元多120元.这就是8∶5中5份与8∶3中3份的差,每份是120÷(5-3)=60(元)
    因此,张家开支:60×8=480(元) 收入:480+240=720(元)
    李家开支:60×3=180(元) 收入:180+270=450(元)
    答:张家收入720元,李家收入450元.
    解二:设张家收入是8份,李家收入是5份.张家开支的3倍与李家开支的8倍的钱一样多.
    我们画出一个示意图:
    张家开支的3倍是(8份-240)×3.
    李家开支的8倍是(5份-270)×8.
    从图上可以看出,5×8-8×3=16份,相当于270×8-240×3=1440(元).
    因此每份是1440÷16=90(元).
    张家收入是90×8=720(元),李家收入是90×5=450(元).
    答:张家收入720元,李家收入450元.
    23.450千米
    【分析】甲、乙原来的速度比是5∶4,相遇后的速度比是:[5×(1-20%)]∶[4×(1+20%)]=4∶4.8=5∶6。相遇时,甲、乙分别走了全程的和。设全程x千米,剩下的部分甲行的长度和乙行的长度之比为5:6,其中相遇后甲行驶了全长的,所以乙行驶了全长的,所以乙一共行了全长,还剩1-=没有走,所以A、B全长为450千米。
    【详解】[5×(1-20%)]∶[4×(1+20%)]
    =[5×0.8]∶[4×1.2]
    =4∶4.8
    =5∶6
    1-=
    10÷=450(千米)
    答:A,B两地相距450千米。
    【分析】关键是确定相遇后的速度比,综合运用所学知识。
    24.大小齿轮齿数最少要分别是25齿和8齿
    【详解】记丙轮上大、小齿轮数分别为,甲转动15圈时丙轮所转的圈数为,由齿数与转数成反比,有.即
    化为连比
    所以
    因此大小齿轮齿数最少要分别是25齿和8齿.
    25.27.5元
    【详解】解法一:设每种糖果所花钱数为1.
    平均价是:=27.5(元)
    答:这些糖果每千克平均价是27.5元.
    上面解法中,算式很容易列出,但计算却使人感到不易.最好的计算方法是,用22,30,33的最小公倍数330,乘这个繁分数的分子与分母,就有:
    =27.5(元)
    解法二:先求出这三种糖果所买数量之比.
    不妨设,所花钱数是330,立即可求出,所买数量之比是甲∶乙∶丙=15∶11∶10.
    平均数是(15+11+10)÷3=12.
    单价33元的可买10份,要买12份,单价是33×=27.5(元)
    26.1400个;1200个;1050个
    【详解】根据题意可知,甲、乙、丙的工作效率之比为,那么在相同的时间内,三人完成的工作量之比也是,所以甲加工了个零件,乙加工了个零件,丙加工了个零件。
    27.甲工地200袋;乙工地100袋
    【详解】2:1=8:4
    125÷(8-3)=25(袋)
    甲工地:25×8=200(袋)
    乙工地:25×4=100(袋)
    28.96棵;120棵
    【分析】根据乙班比甲班多种树24棵,设甲班种树x棵,乙班就是(x+24)棵,然后根据甲班种的棵数的等于乙班种的棵数的,即可列方程解答。
    【详解】解:设甲班种树x棵,乙班种树(x+24)棵。
    x=(x+24)
    x=x+
    x-x=
    0.25x-0.2x=4.8
    0.05x=4.8
    x=96
    乙:96+24=120(棵)
    答:甲班种树96棵,乙班种树120棵。
    【分析】此题属于含有两个未知数的分数应用题,关键是找出题中的数量关系式,然后列方程解答。
    29.66级
    【详解】乙与甲的时间比为60/2:55/1=30:55,甲与乙走过的级数差5级,是由于扶梯自动运行的时间差导致的,时间差为25个单位,那么5个时间单位扶梯自动缩进1级,30个时间单位缩进6级,那么级数为60+6=66,或者55+55÷5=66.
    30.96
    【详解】根据题意可知,圆柱形钢材的体积等于桶里下降部分水的体积,因为钢材底面半径是水桶底面半径的,即,钢材底面积就是水桶底面积的.根据体积一定,圆柱体的底面积与高成反比例可知,钢材的长是水面下降高度的16倍.
    6÷()=96(厘米),(法2):3.14×20×6÷(3.14×5)=96(厘米).
    31.60级
    【详解】关键是找出两人上下楼的时间比.
    因为男孩的速度是女孩的2倍,所以男孩走80级到达楼下与女孩走40级到达楼上所用时间相同,男孩下楼过程中由于自动扶梯上行而多走的路应该等于女孩上楼过程借助自动扶梯少走的路,男孩比女孩多走的路应等于行程过程中自动扶梯运行的级数的两倍.
    因此自动扶梯向上运行了(80-40)÷2=20(级),扶梯可见部分有80-20=60(级).
    32.4∶6∶3
    【分析】设三个队的工作效率分别为、、,三项工程的工作量分别为1、2、3,若干天为k天,则k天后,甲完成的工作量为,未完成的工作量为1-,乙完成的工作量为,未完成的工作量为2-。丙完成的工作量为,未完成的工作量为3-,于是有、、,解方程组即可。
    【详解】设三个队的工作效率分别为、、,三项工程的工作量分别为1、2、3,若干天为k天,则k天后,甲完成的工作量为,未完成的工作量为1-,乙完成的工作量为,未完成的工作量为2-,丙完成的工作量为,未完成的工作量为3-。
    由此可得:
    从而可得:即:
    进而得:,即
    所以,4∶6∶3
    答:甲、乙、丙队的工作效率的比是4∶6∶3。
    【分析】解答此题的关键是利用假设法,然后列方程组计算。
    33.36公亩
    【详解】解:设第一块地有x公亩,则第二块地有(90-x)公亩,依题意可得:
    答:第一块地有36公亩.
    34.160
    【详解】(法1)根据爱斯基摩人所说的话,“逃跑的狗如果能再拖雪橇走千米,那我就能比预计时间只迟到一天”,可知只狗拉雪橇走千米,比只狗拉雪橇走千米少用一天.设只狗的速度是千米/天,则根据题意有:,解得:再设原计划走天,由题意得:,解得:,所以爱斯基摩人总共走了:(千米).
    (法2)由于所行总路程不变,依题意知只狗拉雪橇的速度与只狗拉雪橇的速度比为,所以时间比为,结果恰好晚了天,所以行完全程计划用天,实际用了天,再拖雪橇千米后所用时间比还是,所以再拖雪橇千米后计划用时天.实际用时天,所以只狗托雪橇的速度为(千米/天),所以全称为千米
    35.4500立方厘米
    【分析】将宽与高的比的前项变成1,那么后项就是 ,所以长方体的长、宽、高的比是6:3:2,而长方体的棱长之和=(长方体的长+长方体的宽+长方体的高)×4,那么长方体的长+长方体的宽+长方体的高=220× =55厘米,然后根据长、宽、高占着三条边之和的几分之几,可以求得长、宽、高的值,再根据长方体的体积=长×宽×高,作答即可。
    【详解】由条件宽与高的比为,所以这个长方体的长、宽、高的比为2:1: =6:3:2
    由于长方体的所有棱中,长、宽、高各有条,
    所以长方体的长为厘米;
    宽为厘米;
    高为厘米;
    所以这个长方形的体积为立方厘米。
    答:这个长方体的体积是4500立方厘米。
    【分析】此题解答关键是利用按比例分配的方法求出长、宽、高,再根据长方体的体积公式进行解答。
    36.30级
    【详解】向上走速度为甲和自动扶梯的速度和,向下走速度为甲和自动扶梯的速度差.当甲乙处于同一高度时,甲反身向下走,结果他一共走了60级,如果他一直走到顶端再反身向下走,则一共要走80级,60÷80=3/4,这说明甲乙处于同一高度时,甲的高度是两层总高度的3/4.则甲和自动扶梯的速度和与自动扶梯的速度之比是3/4:(1-3/4)=3:1,即甲的速度与自动扶梯速度之比2:1,甲和自动扶梯的速度差与自动扶梯的速度相等.向下走速度向上走速度的1/3,所用时间为向上走的3倍,则甲向下走的台阶数就是向上走台阶数的3倍.因此甲向上走了80÷(3+1)=20级台阶.甲的速度与自动扶梯速度之比2:1,甲走20级台阶的同时自动扶梯向上移动了10级台阶,因此如果自动扶梯不动,甲从下到上要走20+10=30级台阶.
    37.11:8
    【详解】小军与小红所行的路程比是:(1+):1=5:4
    小军与小红所用的时间比是:1:(1+)=10:11
    两人的速度比是(5÷10):(4÷11)=11:8
    38.(1)90 108 297
    (2)7290
    【详解】(1)大型车、小型车通过的数量都是与中型车相比,如果能将中的与中的统一成,就可以得到大型车、中型车、小型车的连比.由和,得到.以辆大型车、辆中型车、辆小型车为一组.因为每组中收取小型车的通行费比大型车多(元),所以这天通过的车辆共有(组).所以这天通过大型车有(辆),中型车有(辆),小型车有(辆).
    (2)这天收取的总费用为:元.
    39.3600千米
    【详解】飞机顺风与逆风的速度分别是每小时900千米和每小时720千米,速度比5∶4,所以往返时间之比为4∶5.
    飞机顺风飞行的时间:9×=4小时,
    飞机能保证安全返回的最大路程:900×4=3600千米,
    答:飞机能保证安全返回的最大路程是3600千米.
    【分析】根据条件可知,要保证飞机安全返航,它飞出的路程必须与飞回的路程相等.根据路程一定,速度与时间成反比例,即可求出飞机往返的时间比,求出往返时间就能够求出飞机飞行的最大距离.
    40.
    【分析】因为已知此人走三段路程的时间之比,所以要求出此人走完全程的时间,只要根据已知条件求出此人走上坡路所用的时间,从而只要求出此人上坡的速度和上坡的路程即可.又知道全程30公里且上坡、平路和下坡三段路程比是1∶2∶3,从而求出上坡的路程.
    【详解】上坡路的路程为
    走上坡路所用的时间为
    上坡路所用时间与全程所用时间之比为
    走完全程所用的时间为
    答:此人走完全程共用.
    41.180名;225名;210名
    【详解】将六年级学生的,等于五年级学生的,等于四年级学生的,看作一个单位,那么六年级学生人数等于2个单位,五年级学生等于2.5个单位,四年级学生等于学生,所以六年级、五年级、四年级学生人数的比为,所以六年级学生人数为=180人,五年级学生人数为人,四年级学生人数为人
    42.3∶4∶10
    【分析】第一次溢出的水量的体积相当于是小球的体积;第二次溢出的水量的体积相当于是中球体积减去小球体积;第三次溢出的水量的体积相当于是大球体积减去中球体积。
    【详解】设第二次溢出的水量是1份,那么第一次溢出的水量是3份,第三次溢出的水量是6份;
    那么小球体积是3份,中球的体积为3+1=4份,大球体积是4+6=10份;
    所以小中大三球的体积比是3∶4∶10。
    答:小、中、大三球的体积比是3∶4∶10。
    【分析】本题考查的是比的应用与排水问题,当容器注满水时,溢出的水的体积就是物体的体积。
    43.12.5米
    【分析】当甲到终点时,乙离终点还有40米,丙离终点还有50米,所用的时间相同.据此可知乙、丙的路程比、速度比.
    【详解】甲跑完了200米时:
    乙跑了:200-40=160(米);
    丙跑了:200-50=150(米);
    乙与丙的速度比:160:150=16:15
    当乙跑200米时,丙跑了:200÷=200×=187.5(米)
    丙离终点还有:200-187.5=12.5(米);
    答:当乙到达终点时,丙还有12.5米.
    44.140厘米
    【详解】如果只将长边截去,宽、长之比为,所以宽边的长度为(厘米),所以原来铁板的长为(厘米)。
    答:原来长方形铁板的长是140厘米。
    45.3分钟
    【详解】分析各个时间段,甲乙两人的行程. 图中C表示甲、乙第一次相遇地点.因为乙从B到C和从C又返回B时所花的时间相等,而整个过程中甲恰好转一圈回到A,所以甲、乙在C点第一次相遇时,甲刚好走了半圈.
    解:C点距B点:180-90=90(米)
    甲从A到C用了:180÷20=9(分)
    乙的速度是:90÷9=10(米)
    甲、乙第二次相遇还需要90÷(20+10)=3(分钟).
    答:甲车再过3分钟与乙相遇.
    【分析】此题的关键是找出题目中的相等关系,先由乙来回的路程一样得出时间一样,那么甲两段路程的时间也一样,所以路程也一样,然后也可以直接利用路程的比例关系得出甲乙的速度比为2:1,求出乙的速度为10.
    46.42分钟
    【详解】解法一:由题目可知小张、小李、小王都是以匀速前进,且无论相遇点之前和相遇点之后总行程都相等,所以我们应当使用“路程相同,速度比等于时间的反比”这条比例关系来解答本题.
    首先,小张和小李的相遇前后的两个追及,相遇前的追及路程为小张行走一小时的路程,相遇后的追及路程为小张行走24分钟的路程,所以追及路程比为60:24=5:2,两人速度都不变,所以速度差也不变,所以追及时间比为5:2,所以小李前后行走的时间比也是5:2,即前后两段路程比为5:2.
    其次,小王和小张的前后两个追及问题:由于前后路程比为5:2,所以小王的行走时间比为5:2,也即是追及时间比为5:2,速度都不变,所以追及路程比为5:2, 而前段追及路程是小张行走60+45=105分钟的路程,所以后段追及路程是小张行走105÷5×2=42(分钟)所行走的路程,即小王比小张早42分钟到达.
    解法二:运用折线示意图,结合基本几何知识,整个行程过程和其中的数量关系即可一目了然,即:
    ,解得,t=42.
    47.16圈
    【分析】为方便叙述,我们用甲表示甲的齿轮齿数,类似地,用乙、丙分别表示乙、丙的齿轮齿数.
    由已知甲∶乙=8∶7,乙∶丙=14∶5.这是由于两上互相啮合的齿轮,齿数与转数成反比例的关系,所以本题的关键是求出甲∶丙.
    【详解】由已知甲∶乙=8∶7=16∶14,又乙∶丙=14∶5
    所以甲∶乙∶丙=16∶14∶5,即甲∶丙=16∶5
    因此当甲轮转5圈时,丙轮恰好转16圈
    答:甲轮转5圈时,丙轮恰好转16圈.
    48.864∶875
    【详解】略
    49.600
    【详解】甲、乙本月收入的比是,分别节余240元和480元,支出的钱数之比是.如果乙节余480元,甲节余元,那么两人支出的钱数之比也是,现在甲只节余240元,多支出了60元,结果支出的钱数之比从变成了(即),所以这60元就对应份,那么甲支出了元,所以甲本月收入为元.
    50.11千米
    【详解】甲走完全程需要4小时,乙走5.5小时的路程与甲走1个小时的路程之和也等于一个全程.
    所以甲走3个小时的路程等于乙走5.5小时的路程.
    (4-1)÷5.5=,即乙的速度是甲的速度的.甲每小时行全程的,所以乙每小时行全程的,乙两个小时行驶,距B地还有全程的.
    所以全程为:(千米)
    甲的速度是:(千米/小时)
    所以相遇时乙距离B地11千米.
    51.60千克
    【详解】210÷(1+)×
    =210÷×
    =60(千克)
    答:运来香梨60千克.
    52.36cm³
    【详解】由条件长方体的长、宽、高的比,则长方体的所有视面,上面、前面、左面的面积比为,这三个面的面积和等于长方体表面积的二分之一,所以,长方体的上面的面积为,前面的面积为,左面的面积为,而,所以即是长、宽、高的乘积,所以这个长方体的体积为.
    53.120级
    【详解】小明走过的级数是小刚走过的级数的2倍,同时小明速度又是小刚的3倍,可以得到小明与小刚走的时间比2:3,因此小明走的级数实际上是静止的级数加上行走时间内扶梯伸出的级数,小刚行走的级数是静止级数减去行走时间内扶梯缩进的级数,那么他们走过的级数差就是扶梯伸出级数与缩进级数的150-75=75,伸出时间和缩进时间比是2:3,那么伸出和缩进级数比就是2:3,因此伸出级数为75÷(2+3)×2=30,静止时就应该是150-30=120.
    54.2.25
    【详解】李华平时需要7分钟到校,早到1分40秒,即用了分钟到校,其中步行了2分钟,跑步了分钟.所以跑步2分钟,步行5分钟的距离与步行2分钟,跑步分钟的距离相等.跑步分钟的距离与步行3分钟的距离相等.
    3÷=2.25,
    所以他跑步的速度是步行速度的2.25倍.
    55.3185人
    【详解】将运动会最初的运动员人数设为“”,那么男运动员人数为,女运动员人数为,而增加女子艺术体操项目,男运动员人数不变,仍然是,所以这时女运动员人数为,增加男子象棋项目,女运动员人数保持不变,仍然是,所以男运动员人数增加为。女子艺术体操项目人数为,男子象棋项目的人数为女象棋项目运动员有人,女子艺术体操运动员有人,所以现在的总运动员人数为人。
    56.8米
    【分析】将一个正方体一边减少20%,要使面积不变,另一边需要增加1÷(1-20%)-1=25%,所以增加的2米是原边长的25%,用2÷25%即可求出原边长。
    【详解】1÷(1-20%)-1
    =1.25-1
    =25%
    2÷25%=8(米)
    答:原正方形的边长是8米。
    【分析】解答此题的关键是求出增加的2米占原来长度的几分之几,从而求出正方形的边长。
    57.从B堆拿出黑子 175个,白子25个
    【详解】要B堆中黑子占,即黑子与白子之比是3:1,先从B堆中拿出黑子100个,使余下黑子与白子之比是(40-100)∶100=3∶1.再要从 B堆拿出黑子与白子到A堆,拿出的黑子与白子数目也要保持3∶1的比.
    现在 A堆已有黑子350+100=450个,与已有白子500个,相差50个.要黑子占,就是两种棋子一样多.
    从B堆再拿出黑子与白子,要相差50个,又要符合3∶1这个比,要拿出白子数是:50÷(3-1)=25(个).
    再要拿出黑子数是25×3= 75(个)
    答:从B堆拿出黑子 175个,白子25个.

    相关试卷

    (小升初典型奥数)周期问题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版):

    这是一份(小升初典型奥数)周期问题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版),共26页。试卷主要包含了有一列数等内容,欢迎下载使用。

    (小升初典型奥数)变速及平均速度问题(培优)-2023-2024学年六年级下册小升初数学思维拓展(通用版):

    这是一份(小升初典型奥数)变速及平均速度问题(培优)-2023-2024学年六年级下册小升初数学思维拓展(通用版),共33页。试卷主要包含了小芳放学回家,每分钟行75米等内容,欢迎下载使用。

    (小升初典型奥数)分数与百分数应用题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版):

    这是一份(小升初典型奥数)分数与百分数应用题(培优)-2023-2024学年六年级下册小升初数学思维拓展提升(通用版),共34页。

    数学口算宝
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map