圆的基本认识-中考数学二轮考前复习试题(全国通用)
展开
这是一份圆的基本认识-中考数学二轮考前复习试题(全国通用),共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1.下列语句中不正确的有( )
①相等的圆心角所对的弧相等;
②平分弦的直径垂直于弦;
③长度相等的两条弧是等弧;
④圆是轴对称图形,任何一条直径所在的直线都是它的对称轴.
A.3个B.2个C.1个D.0个
2.下列说法:①三点确定一个圆;②圆中最长弦是直径;③长度相等的弧是等弧;④三角形只有一个外接圆.其中真命题有( )
A.4个B.3个C.2个D.1个
3.如图,中,,,,是内部的一个动点,且满足,则线段长的最小值为( )
A.B.2C.D.
4.如图,半径为1的圆从表示1的点开始沿着数轴向左滚动一周,圆上的点A与表示1的点重合,滚动一周后到达点B,点B表示的数是( )
A.﹣2πB.1﹣2πC.﹣πD.1﹣π
5.下列命题中是真命题的有( )
①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的两个圆是等圆;⑤直径是圆中最长的弦.
A.5个B.4个C.3个D.2个
6.如图,的对角线相交于点O,E是以A为圆心,以4为半径为圆上一动点,连接,点P为的中点,连接,若,则的最大值为( )
A.B.C.D.
7.已知抛物线与x轴交于A,B两点,对称轴与x轴交于点D,点C为抛物线的顶点,以C点为圆心的半径为2,点G为上一动点,点P为的中点,则的最大值为( )
A.B.C.D.5
8.如图,在平面直角坐标系中,已知点A(0,1),点B(0,1+t),C(0,1﹣t)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是( )
A.B.5C.4D.
9.如图,以点为圆心,为半径作扇形已知:点在上,且垂直平分动点在线段上运动(不与点重合),设的外心为,则的最小值为( )
A.B.
C.D.
10.下列条件中,不能确定一个圆的是( )
A.圆心与半径B.直径
C.平面上的三个已知点D.三角形的三个顶点
二、填空题
11.有一半圆片(其中圆心角在平面直角坐标系中按如图所示放置,若点可以沿轴正半轴上下滑动,同时点相应地在轴正半轴上滑动,当时,半圆片上的点与原点距离最大,则的值为 .
12.如图,已知点,为平面直角坐标系内两个点,以点A为圆心的经过坐标原点,轴于点C,点D为上的一动点,点E为的中点,则线段长度的最大值为 .
13.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点圆心,对角线为半径画弧,交数轴于点D,则点D表示的数是 .
14.如图,在矩形中,,,点,分别是,边上的动点,且,点为的中点,点为上的一动点,则的最小值为 .
15.已知,中,,,,以为边作,使得,连接,则线段长的最大值为 .
16.在平面直角坐标系中,一个圆经过,,三点,则该圆的圆心的坐标是 .
17.(1)如图①,在平面直角坐标系中,、,以点为圆心、2为半径的上有一动点.连接,若点为的中点,连接,则的最小值为 .
(2)如图②,点A、B的坐标分别为、,点为坐标平面内一点,,点为线段的中点,连接,则的最大值为 .
18.如图,已知直线分别交轴、轴于点,,是以为圆心,为半径的圆上一动点.求面积的最小值 .
19.将函数(x>0)的图像绕坐标原点(0,0)按顺时针方向旋转45°,如图,旋转后的图像与x轴相交于点B,若直线x=与旋转后的图像交于点C与点D,半径为5的⊙M的圆心M在x轴上,若要使△BCD完全在⊙M的内部,⊙M的圆心M横坐标的范围是 .
20.如图,在每个小正方形的边长为1的网格中,边上的点A,点B,点C及点D均落在格点上,且点B,点C是圆上的点.
(1)线段的长等于 .
(2)在网格内有一点E,满足,在线段上有一点F,当取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点E,点F,并简要说明点E,点F的位置是如何找到的(不要求证明) .
三、解答题
21.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.
(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点D,使;
(2)在图(2)中,A,E,F三点是格点,经过点A.先过点F画的平行线交于M,N两点,再画弦的中点G.
22.如图,在中,,C为上一点,连接.
(1)若,求的度数;
(2)若的面积与的面积之比为,求的值.
23.如图,是的直径,C是延长线上一点,点D在上,且的延长线交于点E.若,求的度数.
24.在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足,则称点P为⊙O的“随心点”.
(1)当⊙O的半径r=2时,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“随心点”是 ;
(2)若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;
(3)当⊙O的半径r=2时,直线y=- x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围 .
25.在平面直角坐标系中,有不重合的两个点与,若为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与轴或轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点与点之间的“折距”,记作或,特别地,当与某条坐标轴平行(或重合)时,线段的长是点与点之间的“折距”.例如,如图,点,点,此时.已知为坐标原点,解答下列问题:
(1)①若点,则______;
②若点是以为圆心,2为半径的圆上任意一点,则的最大值是______.
(2)若一次函数的图象分别交轴,轴于点,点是线段上一点,求的值;
(3)已知点,在轴上有一个动点,若以为圆心,半径为1的上有且只有两个点到点的折距为3,请直接写出的取值范围______.
参考答案:
1.A
2.C
3.A
4.B
5.D
6.B
7.B
8.A
9.B
10.C
11./26度
12.
13.
14.
15.
16.
17.
18.
19.
20. 如图, 取格点M、N,连接,取格点,连接交于T,连接,连接交于S,连接交于F,连接交圆于E,则点E、F即为所求
21.略
22.(1)∠BOC的度数为50°
(2)
23.
24.(1) A,C ;(2);(3) 1≤b≤或-≤b≤-1.
25.(1)①5②
(2)2
(3)t的取值范围为或
相关试卷
这是一份梯形-中考数学二轮考前复习试题(全国通用),共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份旋转-中考数学二轮考前复习试题(全国通用),共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份平移-中考数学二轮考前复习试题(全国通用),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。