所属成套资源:2024年中考数学二轮复习课件+讲义+练习(全国通用)
专题07 图形的轴对称、平移与旋转(课件)-2024年中考数学二轮复习课件(全国通用)
展开
这是一份专题07 图形的轴对称、平移与旋转(课件)-2024年中考数学二轮复习课件(全国通用),共45页。PPT课件主要包含了中考数学二轮复习策略,知识建构,考点精讲,考情分析等内容,欢迎下载使用。
第二轮复习是为了将第一轮复习的知识点、线结合,交织成知识网络,是第一轮复习的延伸和提高,所以要注重与实际问题的联系,以实现数学能力的培养和提高。本轮复习应该侧重培养数学能力,在第一轮复习的基础上,适当增加难度,要有针对性,围绕热点、难点、创新点、重点,特别是近几年的中考常考内容选定专题。一、复习方法:1.以专题复习为主。2.重视方法思维的训练。3.拓宽思维的广度,培养多角度、多维度思考问题的习惯。二、复习难点:1.专题的选择要准,安排时间要合理。2.专项复习要以题带知识。3.在复习的过程中要兼顾基础,在此基础上适当增加变式和难度,提高能力。
专题07 图形的轴对称、平移与旋转
2024年中考数学二轮复习课件
平移的三大要素:1)平移的起点,2)平移的方向,3)平移的距离.平移的性质:1)平移不改变图形的大小、形状,只改变图形的位置,因此平移前后的两个图形全等.2)平移前后对应线段平行且相等、对应角相等.3)任意两组对应点的连线平行(或在同一条直线上)且相等,对应点之间的距离就是平移的距离.旋转的三大要素:旋转中心、旋转方向和旋转角度.旋转的性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.中心对称的性质:1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;中心对称的两个图形是全等图形.
在判断一个图形是否为轴对称图形、中心对称图形时,要明确以下两点:1)如果能找到一条直线(对称轴)把一个图形分成两部分,且直线两旁的部分完全重合,那么这个图形就是轴对称图形;2)把一个平面图形绕某一点旋转 180°,如果旋转后的图形能和原图形重合,那么这个图形就是中心对称图形.
解决图形变化有关的作图问题方法:1)平移与旋转作图都应抓住两个要点:一是平移、旋转的方向;二是平移的距离及旋转的角度.2)基本的作图方法是先选取已知图形的几个关键点,再根据平移或旋转的性质作它们的对应点,然后以“局部带动整体”的思想方法作变换后的图形.3)无论是平移、轴对称与旋转,都不改变图形的大小和形状.
平移变换问题:分几何图形平移变换和函数图像平移变换. 平移是将一个图形沿某一方向移动一段距离,不会改变图形的大小和形状,只改变图形的位置.在图形的变化过程中,解决此类问题的方法很多,而关键在于解决问题的着眼点,从恰当的着眼点出发,再根据具体图形变换的特点确定其变化.
轴对称变换问题:分折叠变换和与函数图象有关的轴对称变化.轴对称变换通常有两种情况:一是题目的背景图形是轴对称图形,二是题目的背景不是轴对称图形时,要善于发现和运用其中的轴对称的性质,如把轴对称和等腰三角形结合起来,找出轴对称特征并探索出规律,达到解决问题的目的.
折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【解题思路】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.
旋转变换问题:分为几何图形旋转变换和与函数图象有关的旋转变化.在实际解题中,若我们能恰当地运用图形的旋转变换,往往能起到集中条件、开阔思路、化难为易的效果,图形的旋转变换,既要借助于推理,但更要借助于直觉和观察,变换的意识与变换的视角,会使这种直觉更敏锐,使这种观察更具眼力.
相关课件
这是一份专题06 圆中的相关证明及计算(课件)-2024年中考数学二轮复习课件(全国通用),共57页。PPT课件主要包含了中考数学二轮复习策略,知识建构,考点精讲,考情分析等内容,欢迎下载使用。
这是一份专题03 函数、方程及不等式的应用(课件)-2024年中考数学二轮复习课件(全国通用),共60页。PPT课件主要包含了中考数学二轮复习策略,知识建构,考点精讲,考情分析等内容,欢迎下载使用。
这是一份专题02 函数及其性质(课件)-2024年中考数学二轮复习课件(全国通用),共60页。PPT课件主要包含了考情分析,知识建构,考点精讲等内容,欢迎下载使用。