压轴题06 规律探究(4题型+解题模板+技巧精讲)-2024年中考数学二轮复习讲义(全国通用)
展开一、复习方法
1.以专题复习为主。 2.重视方法思维的训练。
3.拓宽思维的广度,培养多角度、多维度思考问题的习惯。
二、复习难点
1.专题的选择要准,安排时间要合理。 2.专项复习要以题带知识。
3.在复习的过程中要兼顾基础,在此基础上适当增加变式和难度,提高能力。
压轴题解题模板06
规律探究
目 录
TOC \ "1-1" \n \p " " \h \z \u
\l "_Tc161850880" 题型一 周期型
\l "_Tc161850881" 题型二递推型
\l "_Tc161850882" 题型三 固定累加型
\l "_Tc161850883" 题型四 渐变累加型
题型一 周期型
【例1】(2023·广东江门·一模)现有四条公共端点为的射线、、、,若点,,,……按如图所示的规律排列,则点应该落在( )
A.射线上B.射线上C.射线上D.射线上
【变式1-1】(2023·新疆克孜勒苏·一模)在如图所示的平面直角坐标系中,一只蚂蚁从A点出发,沿着A→B→C→D→A…循环爬行,其中A点坐标为,B点坐标为,C点坐标为,当蚂蚁爬了个单位时,它所处位置的坐标为( )
A.B.C.D.
【变式1-2】已知(,),,,…,,则( )
A.B.C.D.
【变式1-3】有一个数字游戏,第一步:取一个自然数,计算得,第二步:算出的各位数字之和得,计算得,第三步算出的各位数字之和得,计算得;以此类推,则的值为( )
A.7B.52C.154D.310
题型二递推型
【例2】(2023·山东临沂·中考真题)观察下列式子
;
;
;
……
按照上述规律, .
【变式2-1】(2023·湖南岳阳·中考真题)观察下列式子:
;;;;;…
依此规律,则第(为正整数)个等式是 .
【变式2-2】(2023·辽宁阜新·一模)如图,在平面直角坐标系中,,,,…都是等边三角形,且点,,,,坐标分别是,,,,,依据图形所反映的规律,则的坐标是( )
A.B.C.D.
【变式2-3】(2023·宁夏银川·三模)如图,在平面直角坐标系中,点在轴的正半轴上,,将绕点顺时针旋转到,扫过的面积记为,交轴于点;将绕点顺时针旋转到,扫过的面积记为,交轴于点;将绕点顺时针旋转到扫过的面积记为;;按此规律,则为( )
A.B.C.D.
题型三 固定累加型
【例3】(2023·山东烟台·中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形,正方形,按此规律作下去,所作正方形的顶点均在格点上,其中正方形的顶点坐标分别为,,则顶点的坐标为( )
A.B.C.D.
【变式3-1】(2023·重庆·中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是( )
A.39B.44C.49D.54
【变式3-2】(2023·山西·中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n个图案中有 个白色圆片(用含n的代数式表示)
【变式3-3】(2023·湖北十堰·中考真题)用火柴棍拼成如下图案,其中第①个图案由4个小等边三角形围成1个小菱形,第②个图案由6个小等边三角形围成2个小菱形,……,若按此规律拼下去,则第n个图案需要火柴棍的根数为 (用含n的式子表示).
题型四 渐变累加型
【例4】(2023·四川绵阳·中考真题)如下图,将形状、大小完全相同的“●”和线段按照一定规律摆成以下图形,第1幅图形中“●”的个数为,第2幅图形中“●”的个数为,第3幅图形中“●”的个数为,…,以此类推,那么的值为( )
A.B.C.D.
【变式4-1】(2023·重庆·中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )
A.14B.20C.23D.26
【变式4-2】(2023·山东聊城·中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:;;;;…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n个数对: .
【变式4-3】(2023·四川遂宁·中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为,乙烷的化学式为,丙烷的化学式为……,其分子结构模型如图所示,按照此规律,十二烷的化学式为 .
一、单选题
1.(2023·云南红河·一模)如图图形是同样大小的小五角星按一定规律组成的,按此规律排列,则第n个图形中小五角星的个数为( )
A.B. C.D.
2.(2023·云南玉溪·一模)观察下列一组数:,,,,,,它们是按一定规律排列的,那么这一组数的第个数是( )
A.B.C.D.
3.(2023·广东肇庆·三模)用黑色和白色的正方形的卡片按照如图所示的规律拼图案,即从第2个图案开始,每个图案都比前一个图案多3个黑色正方形.若第n个图案中黑色正方形的个数为55,则n的值为( )
A.17B.18C.19D.20
4.(23-24七年级上·河南周口·阶段练习)按一定规律排列的单项式:a,,,,,,第n个单项式是( )
A.B.C.D.
5.(23-24七年级上·河南新乡·期中)把黑色圆点按如图所示的规律拼图案,其中第①个图案中有4个黑色圆点,第②个图案中有6个黑色圆点,第③个图案中有8个黑色圆点,…,按此规律排列下去,则第⑦个图案中黑色圆点的个数为( )
A.12B.14C.16D.18
6.(2023·河南安阳·一模)如图,将数列排成一个三角形数阵:
按照以上排列的规律,第11行从左数第5个数为( )
A.119B.-121C.-117D.123
7.(2023·浙江衢州·一模)观察下列数据:,,,,,…,它们是按一定规律排列的,依照此规律,第个数据是( )
A.B.C.D.
8.(2023·云南昭通·三模)按一定规律得列的单项式;,…,按照上述规律,第n个单项式为( )
A.B.C.D.
9.(19-20七年级上·四川达州·期末)探索规律:观察下面的一列单项式:、、、、、…,根据其中的规律得出的第9个单项式是( )
A.B.C.D.
10.(2023·重庆巴南·一模)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有5颗棋子,第②个图形有8颗棋子,第③个图形有13颗棋子,……,则第⑦个图形中棋子的颗数为( )
A.36B.40C.49D.53
11.(2023·重庆渝中·二模)如图,是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,按照这样的规律,第个图案中涂有阴影的小正方形个数是( )·
A.B.C.D.
12.(2023·辽宁阜新·一模)如图,在平面直角坐标系中,,,将绕点顺时针旋转并且按一定规律放大,每次变化后得到的图形仍是顶角为的等腰三角形.第一次变化后得到等腰三角形,点的对应点为;第二次变化后得到等腰三角形,点的对应点为;第三次变化后得到等腰三角形,点的对应点为……依此规律,则第2023年等腰三角形中,点的坐标是( )
A.B.C.D.
二、填空题
13.(2023·新疆乌鲁木齐·二模)将一些完全相同的三角形按如图所示的规律排列,第1个图形中有2个三角形,第2个图形中有5个三角形,第③个图形中有10个三角形,第④个图形中有17个三角形,…,按此规律排列,则第⑩个图形中三角形的个数为 .
14.(22-23七年级下·黑龙江哈尔滨·期末)如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到,第2次接着运动到点,第3次接着运动到点,按这样的运动规律,经过第2023次运动后,动点的坐标是 .
15.(2023·山西忻州·模拟预测)如图是一组有规律的图案,它们是由边长相同的正方形和三角形镶嵌而成,第(1)个图案有4个三角形和4个正方形,第(2)个图案有10个三角形和8个正方形,第(3)个图案有16个三角形和12个正方形,…,依此规律,第个图案中三角形和正方形的总个数为 个.(用含的式子表示)
(1) (2) (3)
题型解读:
规律探索问题在中考中常以选择题、填空题的形式出现,难度中等,规律性较强,重点考查数式、坐标和图形的规律探索问题,涉及整式的计算、一次函数、反比例函数、二次函数、圆、特殊三角形、勾股定理、图形变换等相关知识,以及类比、数形结合、转化与化归等数学思想.此类题型常涉及以下问题:①周期型;②递推型;③固定累加型;④渐变累加型等.右图为规律探索问题中各题型的考查热度.
解题模板:
数式的规律探索
坐标的规律探索
图形的规律探索
压轴题04 几何综合(3题型+7类型+解题模板+技巧精讲)-2024年中考数学二轮复习讲义(全国通用): 这是一份压轴题04 几何综合(3题型+7类型+解题模板+技巧精讲)-2024年中考数学二轮复习讲义(全国通用),文件包含压轴题04几何综合3题型+7类型+解题模板+技巧精讲原卷版docx、压轴题04几何综合3题型+7类型+解题模板+技巧精讲解析版docx等2份试卷配套教学资源,其中试卷共130页, 欢迎下载使用。
压轴题03 几何背景下的线段最值问题(3题型+解题模板+技巧精讲)-2024年中考数学二轮复习讲义(全国通用): 这是一份压轴题03 几何背景下的线段最值问题(3题型+解题模板+技巧精讲)-2024年中考数学二轮复习讲义(全国通用),文件包含压轴题03几何背景下的线段最值问题3题型+解题模板+技巧精讲原卷版docx、压轴题03几何背景下的线段最值问题3题型+解题模板+技巧精讲解析版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
压轴题02 反比例函数的综合问题(3题型+解题模板+技巧精讲)-2024年中考数学二轮复习讲义(全国通用): 这是一份压轴题02 反比例函数的综合问题(3题型+解题模板+技巧精讲)-2024年中考数学二轮复习讲义(全国通用),文件包含压轴题02反比例函数的综合问题3题型+解题模板+技巧精讲原卷版docx、压轴题02反比例函数的综合问题3题型+解题模板+技巧精讲解析版docx等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。