2024年中考押题预测卷(湖北省卷)数学(考试版A3)
展开(考试时间:120分钟 试卷满分:120分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.在中国古代数学著作《九章算术》中记载了用算筹表示正负数的方法,即“正算赤,负算黑”.如果向东走30米记作“+30米”,那么向西走70米记作( )
A.+70米B.+30米C.﹣30米D.﹣70米
2.2024年巴黎奥运会运动项目图标设计大量使用了对称元素.下列分别是划船、篮球、摔跤、冲浪四个运动项目的图标,其中既是轴对称图形又是中心对称图形的是( )
A.划船B.摔跤
C.篮球D.冲浪
3.从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为( )
A.7×108B.7×109C.7×1010D.7×1011
4.已知点P(a,a+1)在平面直角坐标系的第二象限,则a的取值范围在数轴上可表示为( )
A.B.
C.D.
5.下列运算正确的是( )
A.(−3)2=3B.(3a)2=6a2C.3+2=32D.a6÷a2=a3
6.将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一条直角边重合,含30°角的直角三角板的斜边与纸条的一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数为( )
A.30°B.25°C.20°D.15°
7.如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A=88°,∠C=42°,AB=60,则点A到BC的距离为( )
A.60sin50°B.60sin50°C.60cs50°D.60tan50°
8.如图,已知AB与⊙O相切于点A,AC是⊙O的直径,连接BC交⊙O于点D,E为⊙O上一点,当∠CED=58°时,∠B的度数是( )
A.32°B.64°C.29°D.58°
9.如图,在▱ABCD中,AB=2,BC=3,以点C为圆心,适当长为半径画弧,交BC于点M,交CD于点N,再分别以点M,点N为圆心,大于12MN的长为半径画弧,两弧相交于点F,射线CF交BA的延长线于点E,则AE的长是( )
A.2B.1C.2D.12
10.已知:平面直角坐标系中,抛物线y=ax2+bx+c的开口向上,对称轴为直线x=﹣1,且经过点(﹣3,0),则下列结论正确的有( )
(1)a﹣b+c<0;(2)4a2﹣2bc>0;(3)将抛物线y=ax2+bx+c向左平移1个单位时,它会过原点;(4)直线y=2ax﹣c不过第四象限.
A.1个B.2个C.3个D.4个
第Ⅱ卷
二、填空题(本大题共5个小题,每小题3分,共15分)
11.计算1m2−1−m1−m2的结果是 .
12.一次函数y=kx+b图象经过点(1,1),当x=2时,5<y<9,则k的值可以是 (写出一个即可).
13.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.若要从“立春”“立夏”“秋分”“大寒”四张邮票中抽取两张,则恰好抽到“立夏”、“秋分”两张邮票的概率是 .
14.我国古代《孙子算经》中有记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是“每3人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”则乘车人数为 人.
15.如图,在矩形ABCD中,点M为矩形AD的中点,连接CM,沿着CM折叠,点D的对应点D',N为BC上一点,且BN<CN,沿MN折叠,恰好AM与D'M重合,此时点A的对应点为点D',若AB=6,BN=3.5,则A′到CM的距离为 .
三、解答题(本大题共9个小题,共75分.解答应写出文字说明,证明过程或演算步骤)
16.(6分)计算:12−(3.14−π)0−4sin60°+(14)−1.
17.(6分)如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E、F在对角线AC上,且AE=CF.
求证:四边形EGFH是平行四边形.
18.(6分)甲辰龙年春节,红嘴鸥“火”了,全国各地的游客慕名而来,感受昆明人鸥和谐的美好氛围.某教育集团组织开展观鸟节科普系列活动,学校准备为同学们购进A,B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用1000元购进A款和用800元购进B款文化衫的数量相同.求A款文化衫和B款文化衫每件各多少元?
19.(8分)3月11日邯郸3名初中生杀人埋尸案发生后,为加强学生法治观念,某校开展了“普法知识”竞赛,并从七、八年级各随机选取了20名同学的竞赛成绩进行了整理、描述和分析(成绩得分用x表示,其中A:0≤x<85,B:85≤x<90,C:90≤x<95,D:95≤x≤100,得分在90分及以上为优秀).下面给出了部分信息:
七年级C组同学的分数分别为:94,91,93,90;
八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.
七、八年级选取的学生竞赛成绩统计表:
(1)填空:a= ,b= ,m= .
(2)根据以上数据,你认为该校七、八年级学生在“普法知识”竞赛中,哪个年级学生成绩更好?请说明理由.(至少写出两条理由)
(3)该校七年级有学生400名,八年级有学生500名,请估计这两个年级竞赛成绩为优秀的学生的总人数.
20.(8分)如图,在平面直角坐标系中,双曲线l:y=kx(x>0)过点A(a,b),B(2,1)(0<a<2);过点A作AC⊥x轴,垂足为C.
(1)求l的解析式;
(2)当△ABC的面积为2时,求点A的坐标;
(3)点P为l上一段曲线AB(包括A,B两点)的动点,直线l1:y=mx+1过点P;在(2)的条件下,若y=mx+1具有y随x增大而增大的特点,请直接写出m的取值范围.(不必说明理由)
21.(8分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,连接OD,过点D作DE⊥AB于点E,延长BA交⊙O于点F,连接CF.
(1)求证:DE为⊙O的切线;
(2)若CF=6,sinB=35,求⊙O的半径.
22.(10分)某地大力推广成本为10元/斤的农产品,该农产品的售价不低于15元/斤,不高于30元/斤.
(1)每日销售量y(斤)与售价x(元/斤)之间满足如图函数关系式.求y与x之间的函数关系式;
(2)若每天销售利润率不低于40%,且不高于100%,求每日销售的最大利润;
(3)该地科技助农队帮助果农降低种植成本,成本每斤减少m元(0<m≤8),已知每日最大利润为2592元,求m的值.
23.(11分)综合与实践
如图①,边长为4的正方形ABCD与边长为a(0<a<4)的正方形CFEG的顶点C重合,点E在对角线AC上.
(1)[问题发现]如图①,AE与BF的数量关系为 ;
(2)[类比探究]如图②,将正方形CFEG绕点C顺时针旋转α(0°<α<30°),请问此时上述结论是否仍然成立?若成立,请写出推理过程;若不成立,请说明理由;
(3)[拓展延伸]当a=2时,将正方形CFEG按图①所示位置开始绕点C顺时针旋转,在正方形CFEG旋转的过程中,当点A,F,C在一条直线上时,请直接写出此时线段AE的长.
24.(12分)如图1,抛物线y=ax2+x+c与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于C.
(1)求抛物线的解析式;
(2)点P是直线BC上方抛物线上的—个动点,使△PBC的面积等于△ABC面积的14,求点P的坐标;
(3)过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象(如图2),请你结合新图象解答:当直线y=−12x+d与新图象只有一个公共点Q(m,n),且n≥﹣8时,求d的取值范围.
年级
平均数
中位数
众数
优秀率
七
91
a
95
m
八
91
93
b
65%
2024年中考押题预测卷(济南卷)数学(考试版A3): 这是一份2024年中考押题预测卷(济南卷)数学(考试版A3),共4页。试卷主要包含了下列计算正确的是,定义等内容,欢迎下载使用。
2024年中考押题预测卷(河北卷)数学(考试版A3): 这是一份2024年中考押题预测卷(河北卷)数学(考试版A3),共4页。试卷主要包含了如图为一个运算程序,其结果为,等内容,欢迎下载使用。
2024年中考押题预测卷(海南卷)数学(考试版A3): 这是一份2024年中考押题预测卷(海南卷)数学(考试版A3),共3页。试卷主要包含了下列运算正确的是,方程的解为,若反比例函数的图象经过点等内容,欢迎下载使用。