![数学(盐城卷)-2024年中考数学考前押题卷01](http://www.enxinlong.com/img-preview/2/3/15742914/1-1715906457290/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(盐城卷)-2024年中考数学考前押题卷02](http://www.enxinlong.com/img-preview/2/3/15742914/1-1715906457336/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(盐城卷)-2024年中考数学考前押题卷03](http://www.enxinlong.com/img-preview/2/3/15742914/1-1715906457365/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(盐城卷)-2024年中考数学考前押题卷01](http://www.enxinlong.com/img-preview/2/3/15742914/2-1715906460376/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(盐城卷)-2024年中考数学考前押题卷02](http://www.enxinlong.com/img-preview/2/3/15742914/2-1715906460411/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(盐城卷)-2024年中考数学考前押题卷03](http://www.enxinlong.com/img-preview/2/3/15742914/2-1715906460460/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(盐城卷)-2024年中考数学考前押题卷01](http://www.enxinlong.com/img-preview/2/3/15742914/0-1715906451673/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(盐城卷)-2024年中考数学考前押题卷02](http://www.enxinlong.com/img-preview/2/3/15742914/0-1715906451742/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(盐城卷)-2024年中考数学考前押题卷03](http://www.enxinlong.com/img-preview/2/3/15742914/0-1715906451768/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
- 数学(武汉卷)-2024年中考数学考前押题卷 试卷 1 次下载
- 数学(泰州卷)-2024年中考数学考前押题卷 试卷 1 次下载
- 数学(苏州卷)-2024年中考数学考前押题卷 试卷 1 次下载
- 数学(浙江卷)-2024年中考数学考前押题卷 试卷 1 次下载
- 数学(重庆卷)-2024年中考数学考前押题卷 试卷 2 次下载
数学(盐城卷)-2024年中考数学考前押题卷
展开第Ⅰ卷
一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
第Ⅱ卷
二、填空题(本大题共8小题,每小题3分,共24分)
9.2mn(n﹣2m)10.811.51612.52
13.314.5米15.3π16.5
三、解答题(本大题共11个小题,共102分.解答应写出文字说明,证明过程或演算步骤)
17.(6分)
解:﹣12024﹣|﹣sin45°|+(3.14﹣π)0+(2)﹣1-9
=﹣1-22+1+22-3
=﹣3.··············································································6分
18.(6分)
解:∵x2+x+13≥2,
∴3x+2(x+1)≥12,
3x+2x+2≥12,
3x+2x≥12﹣2,
5x≥10,
则x≥2,·············································································4分
将解集表示在数轴上如下:
························································6分
19.(8分)
解:(x﹣2y)2+(2x﹣y)(2x+y)﹣x(x﹣4y)
原式=x2﹣4xy+4y2+4x2﹣y2﹣x2+4xy
=4x2+3y2,············································································4分
当x=﹣1,y=2时,
原式=4×(﹣1)2+3×22
=4+12
=16.················································································8分
20.(8分)
解:(1)n=6+10+11+15+8=50,360°×1550=108°,
故答案为:50,108;···································································4分
(2)将这50名学生的成绩从小到大排列,处在第25、26位的两个数的平均数为77+782=77.5(分),因此中位数是77.5,
故答案为:77.5;·······································································6分
(3)300×15+850=138(名),
答:该校七年级300名被授予“小书虫”称号的学生数大约为138名.·························8分
21.(8分)
解:(1)因为不论x取什么值,等式(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0都成立.
所以不妨取x=1,代入原式得:(2×1﹣1)5=a5+a4+a3+a2+a1+a0,
∴a0+a1+a2+a3+a4+a5=1;·······························································4分
(2)不妨取x=0和2,分别代入原式得:
A+B4=134-A+B2=-52,解得:A=3B=1.·························································8分
22.(10分)
解:(1)画树状图如下:
共有16种等可能的结果,其中两次摸到的球上数字同时为偶数的结果有4种,
∴两次摸到的球上数字同时为偶数的概率为416=14;·······································5分
(2)画树状图如下:
共有12种等可能的结果,其中两次摸到的球上数字之和为偶数的结果有4种,
∴两次摸到的球上数字之和为偶数的概率为412=13.·······································10分
23.(10分)
解:(1)如图,FH为所作;
···························································4分
(2)∵四边形ABCD为平行四边形,
∴AB∥CD,AB=CD,
∴∠ABE=∠CDF,
在△ABE和△CDF中
AB=CD∠ABE=∠CDFBE=DF,
∴△ABE≌△CDF(SAS),
∴∠AEB=∠CFD=110°,
∴∠BFC=180°﹣∠CFD=70°,
∵FH平分∠BFC,
∴∠CFH=12∠BFC=35°.·····························································10分
24.(10分)
解:(1)AD是⊙O的切线,理由:
∵AB是⊙O的直径,
∴∠ACB=90°,
即∠ACE+∠BCE=90°,
∵AD=AC,BE=BC,
∴∠ACE=∠D,∠BCE=∠BEC,
又∵∠BEC=∠AED,
∴∠AED+∠D=90°,
∴∠DAE=90°,
即AD⊥AE,
∵OA是半径,
∴AD是⊙O的切线;···································································5分
(2)由tan∠ACE=13=tan∠D可设AE=a,则AD=3a=AC,
∵OE=3,
∴OA=a+3,AB=2a+6,
∴BE=a+3+3=a+6=BC,
在Rt△ABC中,由勾股定理得,
AB2=BC2+AC2,
即(2a+6)2=(a+6)2+(3a)2,
解得a1=0(舍去),a2=2,
∴BC=a+6=8.·······································································10分
25.(10分)
解:(1)设7月购进x盒口罩,则8月购进(2x+50)盒口罩,
依题意得:2000x=50002x+50,
解得:x=100,········································································2分
经检验,x=100是原方程的解,且符合题意,
∴2x+50=2×100+50=250.
答:7月购进100盒口罩,8月购进250盒口罩.··········································3分
(2)①口罩的进价为2000÷100=20(元),
7月份两店分到的口罩100÷2=50(盒).
依题意得:乙店原价部分的利润为(30﹣20)a=10a(元),甲店优惠部分的总利润为(30×0.8﹣20)(50﹣a)=4(50﹣a)元,
乙店优惠部分的总利润为(30×0.9﹣20)b+(30×0.7﹣20)(50﹣a﹣b)=(50+6b﹣a)(元).
∵两店的利润相同,
∴4(50﹣a)=50+6b﹣a,
整理得:a+2b=50,
又∵a+b=30,
∴a=10,b=20;······································································6分
②8月乙店分到口罩250÷2=125(盒).
依题意得:10a+4(50﹣a)+(30﹣20)n﹣20(125﹣n)=100,
∴n=80-a5,
∵125﹣n≥50,
∴n≤75.
又∵a,b,n均为自然数,且n≠0,
∴a为10的整数倍,
∴a=30b=10n=74或a=40b=5n=72,
答:n的值为74或72.································································10分
26.(12分)
解:(1)∵矩形ABCD的顶点坐标分别是A(﹣1,2),B(﹣1,﹣1),C(3,﹣1),D(3,2),
∴矩形ABCD的“梦之点”(x,y)满足﹣1≤x≤3,﹣1≤y≤2,
∴点M1(1,1),M2(2,2)是矩形ABCD的“梦之点”,点M3(3,3)不是矩形ABCD的“梦之点”,
故答案为:M1,M2;····································································2分
(2)∵点A,B是抛物线y=-12x2+x+92上的“梦之点”,
∴点A,B是直线y=x上的点,
∴y=xy=-12x2+x+92,
解得:x1=3y1=3,x2=-3y2=-3,
∴A(3,3),B(﹣3,﹣3),
∵y=-12x2+x+92=-12(x﹣1)2+5,
∴抛物线的顶点为C(1,5),抛物线的对称轴为直线x=1,·································4分
设抛物线的对称轴交AB于M,则M(1,1),
∴CM=5﹣1=4,
∴S△ABC=S△AMC+S△MBC
=12•CM•(xA﹣xC)+12•CM•(xC﹣xB)
=12•CM•(xA﹣xB)
=12×4×[3﹣(﹣3)]
=12;··············································································6分
(3)存在,理由如下:
设P(t,-12t2+t+92),
∵以AB为对角线,以A、B、P、Q为顶点的四边形是菱形,
∴AP=BP,
∴(t﹣3)2+(-12t2+t+92-3)2=(t+3)2+(-12t2+t+92+3)2,
解得:t=2±13,
当t=2-13时,-12t2+t+92=-12×(2-13)2+2-13+92=13-2,
当t=2+13时,-12t2+t+92=-12×(2+13)2+2+13+92=-13-2,
∴P点坐标为(2-13,13-2)或(2+13,-13-2).·································12分
27.(14分)
(1)证明:选择图1,
∵四边形ABCD是正方形,
∴BA=BC,∠ABE=∠CBE=45°,
∵BE=BE,
∴△BEA≌△BEC(SAS),
∴EA=EC,
由旋转得:EA=EF,
∴EF=EC.
选择图2,
∵四边形ABCD是正方形,
∴BA=BC,∠ABE=∠CBE=45°,
∵BE=BE,
∴△BEA≌△BEC(SAS),
∴EA=EC,
由旋转得:EA=EF,
∴EF=EC.············································································3分
(2)解:猜想DM=BF.理由如下:
选择图1,过点F作FH⊥BC交BD于点H,
则∠HFB=90°,
∵四边形ABCD是正方形,
∴∠BCD=90°,
∴∠HFB=∠BCD,
∴FH∥CD,
∴∠HFE=∠M,
∵EF=EC,
∴∠EFC=∠ECF,
∵∠FCD=90°,
∴∠EFC+∠M=90°,∠ECD+∠ECF=90°,
∴∠M=∠ECM,
∴EC=EM,
∴EF=EM,
∵∠HEF=∠DEM,
∴△HEF≌△DEM(ASA),
∴DM=FH,
∵∠HBF=45°,∠BFH=90°,
∴∠BHF=45°,
∴BF=FH,
∴DM=BF.
若选择图2,过点F作FH⊥BC交DB的延长线于点H,
则∠HFB=90°,
∵四边形ABCD是正方形,
∴∠BCD=90°,
∴∠HFB=∠BCD,
∴FH∥CD,
∴∠H=∠EDM,
∵EF=EC,
∴∠EFC=∠ECF,
∵∠EFC+∠FMC=90°,∠ECF+∠ECM=90°,
∴∠FMC=∠ECM,
∴EC=EM,
∴EF=EM,
∵∠HEF=∠DEM,
∴△HEF≌△DEM(AAS),
∴FH=DM,
∵∠DBC=45°,
∴∠FBH=45°,
∴∠H=45°,
∴BF=FH,
∴DM=BF.··········································································7分
(3)解:如图3,取AD的中点G,连接EG,
∵NE=AE,
∴点E是AN的中点,
∴EG=12DN,
∵△ADN的周长=AD+DN+AN=3+2(AE+EG),
∴当△ADN的周长最小时,AE+EG最小,此时,C、E、G三点共线,如图4,
∵四边形ABCD是正方形,
∴AB=AD=BC=3,AD∥BC,∠BAD=90°,
在Rt△ABD中,BD=32,
∵点G是AD的中点,
∴DG=12AD=32,DGBC=12,
∵AD∥BC,
∴△DEG∽△BEC,
∴DEBE=DGBC=12,
∴BE=2DE,
∵BE+DE=BD=32,
∴2DE+DE=32,即3DE=32,
∴DE=2.··········································································14分1
2
3
4
5
6
7
8
B
B
A
D
C
B
B
B
数学(新疆卷)-2024年中考数学考前押题卷: 这是一份数学(新疆卷)-2024年中考数学考前押题卷,文件包含数学新疆卷全解全析docx、数学新疆卷参考答案及评分标准docx、数学新疆卷考试版A4docx等3份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
数学(甘肃卷)-2024年中考数学考前押题卷: 这是一份数学(甘肃卷)-2024年中考数学考前押题卷,文件包含数学甘肃卷全解全析docx、数学甘肃卷参考答案及评分标准docx、数学甘肃卷考试版A4docx等3份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
数学(贵州卷)-2024年中考数学考前押题卷: 这是一份数学(贵州卷)-2024年中考数学考前押题卷,文件包含数学贵州卷全解全析docxdocx、数学贵州卷考试版A4docxdocx、数学贵州卷参考答案及评分标准docxdocx等3份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。