![数学(苏州卷)-2024年中考数学考前押题卷01](http://www.enxinlong.com/img-preview/2/3/15742915/2-1715906476723/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(苏州卷)-2024年中考数学考前押题卷02](http://www.enxinlong.com/img-preview/2/3/15742915/2-1715906476750/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(苏州卷)-2024年中考数学考前押题卷03](http://www.enxinlong.com/img-preview/2/3/15742915/2-1715906476763/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(苏州卷)-2024年中考数学考前押题卷01](http://www.enxinlong.com/img-preview/2/3/15742915/1-1715906467058/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(苏州卷)-2024年中考数学考前押题卷02](http://www.enxinlong.com/img-preview/2/3/15742915/1-1715906467079/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(苏州卷)-2024年中考数学考前押题卷03](http://www.enxinlong.com/img-preview/2/3/15742915/1-1715906467105/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(苏州卷)-2024年中考数学考前押题卷01](http://www.enxinlong.com/img-preview/2/3/15742915/0-1715906463611/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(苏州卷)-2024年中考数学考前押题卷02](http://www.enxinlong.com/img-preview/2/3/15742915/0-1715906463656/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![数学(苏州卷)-2024年中考数学考前押题卷03](http://www.enxinlong.com/img-preview/2/3/15742915/0-1715906463669/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
- 数学(泰州卷)-2024年中考数学考前押题卷 试卷 1 次下载
- 数学(盐城卷)-2024年中考数学考前押题卷 试卷 1 次下载
- 数学(浙江卷)-2024年中考数学考前押题卷 试卷 1 次下载
- 数学(重庆卷)-2024年中考数学考前押题卷 试卷 2 次下载
- 数学(四川成都卷)-2024年中考数学考前押题卷 试卷 1 次下载
数学(苏州卷)-2024年中考数学考前押题卷
展开第Ⅰ卷
一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
第Ⅱ卷
二、填空题(本大题共8小题,每小题3分,共24分)
9.x≥﹣2且x≠010. 4n(m+n)(m﹣n)11. 3012. 5
13.30°14. k<﹣315. 1216. 43
三、解答题(本大题共11个小题,共82分.解答应写出文字说明,证明过程或演算步骤)
17.(5分)
解:原式=4-33+2×32-(2-3)
=4-33+3-2+3
=4-2+3+3-33
=2-3 ············································································5分
18.(6分)
解:x-3(x-2)>4①2x-13≤x+12②,
解不等式①得:x<1,
解不等式②得:x≤5,
∴不等式组解集为x<1.································································6分
19.(6分)
解:原式=1-x-2yx+y•(x+y)(x-y)(x-2y)2=1-x-yx-2y=-yx-2y,····································4分
当x=﹣2,y=12时,原式=16.··························································6分
20.(6分)
证明:(1)∵∠BAC=∠EAD
∴∠BAC﹣∠EAC=∠EAD﹣∠EAC
即:∠BAE=∠CAD
在△ABE和△ACD中∠ABD=∠ACDAB=AC∠BAE=∠CAD,
∴△ABE≌△ACD(ASA),
∴AE=AD;···········································································3分
(2)解:∵∠ACB=65°,AB=AC,
∴∠ABC=∠ACB=65°,
∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣65°=50°,
∵∠ABD=∠ACD,∠AOB=∠COD,
∴∠BDC=∠BAC=50°.·······························································6分
21.(8分)
解:(1)调查人数为:30÷30%=100(人),
故答案为:100;······································································2分
(2)20÷100×100%=20%,即m=20,················································3分
25÷100×100%=25%,即n=25,······················································4分
故答案为:20,25;
(3)样本中C组人数为:100﹣20﹣25﹣30﹣5=20(人),
补全条形统计图如下:
·················································6分
(4)1000×30+5100=350(人),···························································8分
答:该校共有学生1000人“平均每天睡眠时间不少于8小时”的学生大约有350人.
22.(8分)
解:(1)∵一共有4个编号的小球,编号为2的有一个,
∴P(任意摸出1个球,这个球的编号是2)=14;··········································2分
(2)画树状图如下:
···································6分
一共有16个等可能的结果,其中第2次摸到的小球编号比第1次摸到的小球编号大2的情况出现了2次,
∴P(第2次摸到的小球编号比第1次摸到的小球编号大2)=216=18.·······················8分
23.(8分)
解:(1)设甲种商品需购进x个,乙种商品需购进y个,
由题意得:x+y=130(90-80)x+(115-100)y=1700,
解得:x=50y=80,
答:甲种商品需购进50个,乙种商品需购进80个;········································4分
(2)设该商场购进甲商品m个,则购进乙商品(130﹣m)个,
由题意得:130﹣m≤1.5m,
解得:m≥52,········································································6分
设全部销售完所获利润为w元,
由题意得:w=(90﹣80)m+(115﹣100)(130﹣m)=﹣5m+1950,
∵﹣5<0,
∴w随m的增大而减小,
∴当m=52时,w有最大值=﹣5×52+1950=1690,·······································8分
答:该商场购进甲商品52个时,才能使甲、乙两种商品全部销售完所获利润最大,最大利润为1690元.
24.(7分)
解:过点D作DF⊥AE,垂足为F,
由题意得:DF=CE=30cm,EF=CD,
在Rt△ADF中,∠A=45°,
∴AF=DFtan45°=30(cm),···························································3分
在Rt△CBE中,∠CBE=70°,
∴BE=CEtan70°≈302.75=12011(cm),
∵AB=35cm,
∴CD=EF=AB+BE﹣AF=35+12011-30≈15.9(cm),
∴CD的长度约为15.9cm.···························································7分
25.(8分)
解:(1)∵一次函数y=k1x+b的图象与反比例函数y=k2x的图象相交于A(﹣2,3),
∴k2=﹣2×3=﹣6,3=﹣2k1+b①,
∴反比例函数解析式为y=-6x,
∵点B的横坐标为6,
∴点B(6,﹣1),
∴﹣1=6k1+b②,
①﹣②得:k1=-12,
∴b=2,
∴一次函数解析式为y=-12x+2;·························································2分
(2)由图象可得:当x<﹣2或0<x<6时,一次函数图象在反比例函数图象的上方,即k1x+b-k2x>0;
·····················································································4分
(3)当x=0时,y=2,
∴S△AOB=S△ACO+S△BCO=12×2×2+12×2×6=8,
S△AOC=12×2×2=2,
分两种情况:
①如图1,当P在线段AB上时,
∵S△AOP=14S△BOP,
∴S△AOP=15×8=85,S△POC=2-85=25,
∴12×2×|xP|=25,
∴xP=-25,
∴点P的坐标为(-25,115);····························································6分
②如图2,当点P在线段BA的延长线上时,
∵S△AOP=14S△BOP,
∴S△AOP=13×8=83,S△POC=2+83=143,
∴12×2×|xP|=143,
∴xP=-143,
∴点P的坐标为(-143,133);···························································8分
综上所述,点P的坐标为(-25,115)或(-143,133).
26.(10分)
解:(1)连接OD,如图所示:
∵AB=10,
∴OA=OB=OD=5,
∵AD=52π,
∴∠AOD的度数为:180°×52π5π=90°,
∴∠ACD=12∠AOD=45°,
∵∠ACB=90°,
∴∠DCB=90°﹣45°=45°.··························································2分
(2)过点C作CG⊥AB于点G,如图所示:
∵∠ACB=90°,AB=10,BC=6,
∴AC=AB2-BC2=8,
∴cs∠CBG=BCAB=BGBC,
∴610=BG6,
解得:BG=3.6,
∴CG=BC2-BG2=4.8,
∴OG=5﹣3.6=1.4,
∵∠AOD=90°,
∴∠DOE=180°﹣90°=90°,
∵CG⊥AB,
∴∠CGE=90°,
∴∠DOE=∠CGE,
∵∠OED=∠CEG,
∴△DOE∽△CGE,
∴CGOD=GEOE,
∴4.85=1.4-OEOE,
解得:OE=57,
∴DE=OD2+OE2=52+(57)2=2527.··············································5分
(3)连接AD,AF,DO,如图所示:
∵AB为直径,
∴∠ACB=90°,
∵∠DCB=60°,
∴∠DCA=90°﹣60°=30°,
∴∠AOD=2∠ACD=60°,
∵AO=DO,
∴△AOD为等边三角形,
∴AD=AO=12AB=2,
∵BC=2DF,
∴ADAB=DFBC=12,
∵AC=AC,
∴∠ADC=∠ABC,
即∠ADF=∠ABC,
∴△ADF∽△ABC,
∴∠AFD=∠ACB=90°,
∴点F在以AD为直径的圆上,设点M为AD的中点,连接BM,交⊙M于点H,当点F在点H处时,BF最小,过点M作MN⊥AB于点N,如图所示:
∵△AOD为等边三角形,
∴∠OAD=60°,
∵∠ANM=90°,
∴∠AMN=90°﹣60°=30°,
∵AM=12AD=1,
∴AN=12AM=12,
∴MN=AM2-AN2=32,BN=AB-AN=4-12=312,
∴BM=BN2-MN2=13,
∵MH=AM=1,
∴BH=13-1,
∴BF的最小值为13-1.······························································10分
27.(10分)
解:(1)由点A的坐标知,OA=2,
∵OC=2OA=4,
∴点C的坐标为(0,4),
将点A、B、C的坐标代入抛物线表达式得:4a-2b+c=016a+4b+c=0c=4,
解得a=12b=1c=4,
∴抛物线的表达式为y=-12x2+x+4;····················································1分
将点B、C的坐标代入一次函数表达式得:4m+n=0n=4,
解得m=-1n=4,
∴直线BC的表达式为y=﹣x+4;······················································2分
(2)由题意可知A(﹣2,0),B(4,0),C(0,4),
∴AB=6,BC=42,∠ABC=45°;直线AC的解析式为:y=2x+4;
若△OBH与△ABC相似,则分两种情况:
①当∠HOB=∠CAB时,△OBH∽△ABC,
此时OH∥AC,
∴k=2;··············································································3分
②当∠HOB=∠ACB时,△OBH∽△CBA,
∴OB:BC=BH:AB,即4:42=BH:6,
解得BH=32,
设点H的坐标为(m,﹣m+4),
∴(m﹣4)2+(﹣m+4)2=(32)2,
解得m=1或7(舍去),
∴H(1,3),
∴k=3,··················································································4分
综上,k的值为2或3.
(3)存在,理由:
设点P的坐标为(m,-12m2+m+4)、点Q的坐标为(t,﹣t+4),
①当点Q在点P的左侧时,
如图2,过点P、Q分别作x轴的垂线,垂足分别为N、M,
由题意得:∠PEQ=90°,
∴∠PEN+∠QEM=90°,
∵∠EQM+∠QEM=90°,
∴∠PEN=∠EQM,
∴∠QME=∠ENP=90°,
∴△QME∽△ENP,
∴PNME=EMQM=PEQE=tan∠EQP=tan∠OCA=OAOC=12,
则PN=-12m2+m+4,ME=1﹣t,EN=m﹣1,QM=﹣t+4,
∴-12m2+m+41-t=m-1-t+4=12,
解得m=±13(舍去负值),
当m=13时,-12m2+m+4=213-52,
∴点P的坐标为(13,213-52).······················································7分
②当点Q在点P的右侧时,
分别过点P、Q作抛物线对称轴的垂线,垂足分别为N、M,
则MQ=t﹣1,ME=t﹣4,NE=-12m2+m+4,PN=m﹣1,
同理可得:△QME∽△ENP,
∴MQEN=MEPN=EQPE=2,
∴t-1-12m2+m+4=t-4m-1=2,
解得m=±7(舍去负值),
∴m=7,
∴点P的坐标为(7,27+12),
∴点P的坐标为(7,27+12)或(13,213-52).·····································10分1
2
3
4
5
6
7
8
C
C
A
C
A
C
B
A
数学(无锡卷)-2024年中考数学考前押题卷: 这是一份数学(无锡卷)-2024年中考数学考前押题卷,文件包含数学无锡卷全解全析docx、数学无锡卷参考答案及评分标准docx、数学无锡卷考试版A4docx等3份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
数学(徐州卷)-2024年中考数学考前押题卷: 这是一份数学(徐州卷)-2024年中考数学考前押题卷,文件包含数学徐州卷全解全析docx、数学徐州卷参考答案及评分标准docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
数学(南通卷)-2024年中考数学考前押题卷: 这是一份数学(南通卷)-2024年中考数学考前押题卷,文件包含数学南通卷全解全析docx、数学南通卷参考答案及评分标准docx、数学南通卷考试版A4docx等3份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。