终身会员
搜索
    上传资料 赚现金

    江西省南昌市2024年中考数学一模试卷

    立即下载
    加入资料篮
    江西省南昌市2024年中考数学一模试卷第1页
    江西省南昌市2024年中考数学一模试卷第2页
    江西省南昌市2024年中考数学一模试卷第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江西省南昌市2024年中考数学一模试卷

    展开

    这是一份江西省南昌市2024年中考数学一模试卷,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    第Ⅰ卷的注释
    一、选择题(本大题共6小题,每小题3分,共18分)(共6题;共18分)
    1. 将一元二次方程3x2-8x=-10化成一般形式是( )
    A . 3x2-8x+10=0 B . 3x2-8x-10=0 C . 3x2-8x=10 D . 3x2=8x-10
    2. 下列图案中属于中心对称图形的是( )
    A . B . C . D .
    3. 如图,已知AB//CD//EF , AD∶AF=3∶5,BE=10,则BC的长等于( )
    A . 4 B . 5 C . 6 D . 7
    4. 下列各选项为某同学得出的关于二次函数y=-x2+4x+5的性质的结论,其中不正确的是( )
    A . 开口向下 B . 顶点坐标为(2,9) C . 方程-x2+4x+5=0的解是 D . 当-1<x<5,函数值小于0
    5. 物理兴趣小组在实验室研究电学时设计了一个电路,其电路图如图1所示.经测试,发现电流I(A)随着电阻R(Ω)的变化而变化,并结合数据描点,连线,画成图2所示的函数图象.若该电路的最小电阻为1Ω,则该电路能通过的( )
    A . 最大电流是36A B . 最大电流是27A C . 最小电流是36A D . 最小电流是27A
    6. 如图,⊙O上依次有点A , C , G , F , E , D , B , 已知DE=AB , FG=AC . 数学小组在探究时得到以下结论:①DE+FG=BC;②;③∠DOE+∠FOG=∠BOC;④∠DEO+∠FGO=∠BAC . 你认为结论正确的序号是( )
    A . ①②③④ B . ②③ C . ②④ D . ②③④
    二、填空题(本大题共6小题,每小题3分,共18分)(共6题;共18分)
    7. 已知反比例函数y=的图象在第二、四象限,则m的取值范围为.
    8. 某实施科技强市的战略,为加强科技基础研究能力,逐步加大了对科研经费的投入.2022年投入科研经费6000万元,2024年投入经费8000万元.设科研经费投入的年平均增长率为x , 根据题意可列方程为.
    9. 设是关于x的方程x2-12x+1=0的两个根,则.
    10. 如图,这是某市文化生态园中抛物线型拱桥及其示意图,已知抛物线型拱桥的函数表达式为 , 为了美化拱桥夜景,拟在该拱桥上距水面(AB)6m处安装夜景灯带EF , 则夜景灯带EF的长是m.
    11. 如图,已知△ABC和△以点C(-1,0)为位似中心,位似比为1∶2的位似图形,若点B的对应点的横坐标为a , 则点B的横坐标为.
    12. 如图,已知过点A(- , 0)的直线y=kx+2与反比例函数y=(x>0)的图象交于点B( , 3),连接OB , 将△AOB绕着点O顺时针旋转后,△AOB的顶点依然在该反比例函数的图象上,则旋转的角度为.
    第Ⅱ卷 主观题
    第Ⅱ卷的注释
    三、解答题(本大题共5小题,每小题6分,共30分)(共5题;共30分)
    13.
    (1) 如图,在Rt△ABC中,∠C=90°,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△ADE , 求∠DAC的度数;
    (2) 下图是某学校人行过道中的一个以O为圆心的圆形拱门,路面AB的宽为2m,高CD为5m,求圆形拱门所在圆的半径.
    14. 课堂上,刘老师展示了一位同学用配方法解的过程,如下:
    解:原方程可化为 , …………………………………第一步
    配方,得 , ……第二步
    即 , ……………………………第三步
    直接开平方,得 , ……………第四步
    所以 . …………第五步
    (1) 这位同学的解题过程从第步开始出现错误;
    (2) 请你正确求解该方程.
    15. 数学老师在作业批改中,针对作业出现多处错误的同学设计了“日日清”的A , B , C , D四种过关训练卡片题组,让他们加强练习.这些卡片的背面、大小完全相同.
    (1) 小明从A , B , C , D四种过关训练卡片题组中任选一种,是A卡片题组的概率是;
    (2) 小明和小红分别从A , B , C , D四种过关训练卡片题组中随机各选一种,请用树状图或列表的方法求两位同学恰好抽到同种过关训练卡片题组的概率.
    16. 已知关于x的二次函数y=ax2+bx+c的图象的对称轴是直线x=1,其最大值是4,经过点A(-1,-4),交y轴于点B , 请仅用无刻度直尺按下列要求作图.
    (1) 在图1中作二次函数图象上的点P(2,2);
    (2) 在图2中二次函数图象的对称轴上找一点Q , 使△ABQ的周长最短.
    17. 主题为“安全骑行,从头盔开始”的安全教育活动在某市全面开展.为了解市民骑电动自行车出行自觉佩戴头盔的情况,某数学实践探究小组在某路口进行调查,经过连续6天的同一时段的调查统计,得到数据并整理如下表:
    (1) 表格中m=;
    (2) 由此数据可估计,经过该路口的电动自行车骑行者佩戴了头盔的概率为;(结果精确到0.01)
    (3) 若该小组某天调查到经过该路口的电动自行车共有1200辆,请问其中佩戴了头盔的骑行者大约有多少人?
    四、解答题(本大题共3小题,每小题8分,共24分)(共3题;共24分)
    18. 已知关于x的二次函数y=x2-(k+4)x+3k .
    (1) 求证:无论k为何值,该函数的图象与x轴总有两个交点;
    (2) 若二次函数的顶点P坐标为(x , y),求y与x之间的函数关系及y的最大值.
    19. 如图,△ABC的各顶点都在反比例函数y=的图象上,其中A(m-3,-4),B(4-m , 6).
    (1) 求反比例函数的解析式;
    (2) 若直线AB解析式为y=ax+b , 求的解集;
    (3) 若反比例函数图象上的点C的横坐标为-12,将线段BC平移到线段AD , (点B与点A重合)请判断四边形ABCD的形状.
    20. 小明大学毕业后积极自主创业,在网上创办了一个微店,销售一款乡村太阳能美化路灯,该灯成本是40元/盏.通过调研发现,若按50元/盏销售,一个月可售500盏;若销售单价每涨1元,月销售量就减少10盏.
    (1) 月销售量m(盏)与销售单价x(元/盏)之间的函数关系式为.
    (2) 小明若想让太阳能美化路灯的月销售利润达到8000元,则太阳能美化路灯销售单价应定为多少元?
    (3) 太阳能美化路灯的销售单价定为多少元时,月销售能获得最大利润?最大利润是多少元?
    五、解答题(本大题共2小题,每小题9分,共18分)(共2题;共18分)
    21. 如图,在三角形ABD中,AD=BD , ∠ADB=90°,AB//DC , 点E是AD上一点,作∠BEC=45°,CE交DB于点F .
    (1) 求证:△FBE~△FCD;
    (2) 求证:∠ABE=∠DBC;
    (3) 已知AB=6,ED=2AE , 求S△BDC .
    22. 已知二次函数y=kx2-6kx+5k(k>0)经过A , B两定点(点A在点B的左侧),顶点为P .
    (1) 求定点A , B的坐标;
    (2) 把二次函数y=kx2-6kx+5k的图象在直线AB下方的部分向上翻折,将向上翻折得到的部分与原二次函数位于直线AB上方的部分的组合图象记作图象W , 求向上翻折部分的函数解析式;
    (3) 在(2)中,已知△ABP的面积为8.
    ①当1≤x≤4时,求图象W中y的取值范围;
    ②若直线y=m与图象W从左到右依次交于C , D , E , F四点,若CD=DE=EP , 求m的值.
    六、解答题(本大题共12分)(共1题;共12分)
    23. 如图1,在矩形ABCD中,CD=BC=4 , 点E , G分别是AD , AB上的中点,过点E , G分别作EF⊥AD , FG⊥AB , FG与EF交于点F , 连接CF .
    (1) 特例感知
    以下结论中正确的序号有;
    ①四边形AGFE是矩形;②矩形ABCD与四边形AGFE位似;③以ED , CF , BG为边围成的三角形不是直角三角形类比发现
    (2) 如图2,将图1中的四边形AGFE绕着点A旋转,连接BG , 观察CF与BG之间的数量关系和位置关系,并证明你的发现;
    (3) 拓展应用
    连接CE , 当CE的长度最大时,
    ①求BG的长度;
    ②连接AC , AF , CF , 若在△ACF内存在一点P , 使CP+AP+PF的值最小,求CP+AP+PF的最小值.
    下载试卷 全部加入试题篮
    平行组卷 答题卡下载 在线测试 收藏试卷 试卷分享 发布测评
    查看全部试题答案解析
    详情
    试卷分析
    (总分:120)
    总体分析
    题量分析
    难度分析
    知识点分析
    试卷信息分值设置
    分数:120分
    题数:23
    难度系数:0
    第Ⅰ卷 客观题
    一、选择题(本大题共6小题,每小题3分,共18分)
    1 2 3 4 5 6
    二、填空题(本大题共6小题,每小题3分,共18分)
    7 8 9 10 11 12
    第Ⅱ卷 主观题
    三、解答题(本大题共5小题,每小题6分,共30分)
    13 14 15 16 17
    四、解答题(本大题共3小题,每小题8分,共24分)
    18 19 20
    五、解答题(本大题共2小题,每小题9分,共18分)
    21 22
    六、解答题(本大题共12分)
    23
    经过路口的电动自行车数量/辆
    180
    230
    300
    260
    240
    280
    自觉佩戴头盔人数/人
    171
    216
    285
    250
    228
    266
    自觉佩戴头盔的频率
    0.95
    0.94
    0.95
    0.96
    0.95
    m

    相关试卷

    2024年江西省南昌市南昌县中考数学一模试卷(含解析):

    这是一份2024年江西省南昌市南昌县中考数学一模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江西省南昌市南昌县中考数学一模试卷(含解析):

    这是一份2024年江西省南昌市南昌县中考数学一模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年江西省南昌市中考数学二模试卷(含解析):

    这是一份2023年江西省南昌市中考数学二模试卷(含解析),共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map