2025届高考数学一轮总复习第十一章计数原理概率随机变量及其分布第七节二项分布超几何分布正态分布课件
展开知识梳理1.n重伯努利试验与二项分布(1)n重伯努利试验把只包含两个可能结果的试验叫做 . 将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.
实际原型是有放回地抽样检验问题
(2)二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0微点拨判断一个随机变量是否服从二项分布的两个关键点:(1)在一次试验中,事件A发生与不发生,二者必居其一,且A发生的概率不变;(2)试验可以独立重复进行n次.
微思考两点分布(0—1分布)和二项分布有什么关系?
提示 两点分布是一种特殊的二项分布,即是n=1的二项分布;二项分布可以看作两点分布的一般形式.
2.超几何分布一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为
其中n,M,N∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.
微点拨超几何分布与二项分布的关系
3.正态分布(1)正态曲线
函数f(x)= ,x∈R,其中μ∈R,σ>0为参数,我们称f(x)为正态密度函数,称它的图象为正态分布密度曲线,简称正态曲线.特别地,当μ=0,σ=1时,相应曲线称为标准正态曲线.
①曲线位于x轴上方,与x轴不相交.当|x|无限增大时,曲线无限接近x轴.②曲线与x轴之间的区域的面积为1.③曲线是单峰的,它关于直线x=μ对称.
⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移.
⑥当μ取定值时,正态曲线的形状由σ确定,σ较小时,峰值高,曲线“瘦高”,表示随机变量X的分布比较集中,如图1所示;σ较大时,峰值低,曲线“矮胖”,表示随机变量X的分布比较分散,如图2所示.
(3)正态分布的定义及表示
若随机变量X的概率分布密度函数为f(x)= ,x∈R,则称随机变量X服从正态分布,记为 .
服从正态分布的随机变量是一种连续型随机变量
假设X~N(μ,σ2),可以证明:对给定的k∈N*,P(μ-kσ≤X≤μ+kσ)是一个只与k有关的定值.特别地,①P(μ-σ≤X≤μ+σ)≈ . ②P(μ-2σ≤X≤μ+2σ)≈ . ③P(μ-3σ≤X≤μ+3σ)≈ .
微点拨1.若X服从正态分布,即X~N(μ,σ2),要充分利用“正态曲线关于直线X=μ对称”和“曲线与x轴之间的区域的面积为1”.2.在实际应用中,通常认为服从正态分布N(μ,σ2)的随机变量X只取[μ-3σ,μ+3σ]中的值,这在统计学中称为3σ原则.
微思考正态分布函数中的μ,σ的含义是什么?
提示 若X~N(μ,σ2),则E(X)=μ,D(X)=σ2.
对点演练1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)二项分布是一个概率分布,其公式相当于(a+b)n展开式的通项,其中a=p,b=1-p.( )(2)从4名男演员和3名女演员中选出4名,其中女演员的人数X服从超几何分布.( )(3)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的均值,σ是正态分布的标准差.( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )
3.随机变量X服从正态分布N(2,σ2),若P(2
解析由题意可知,P(X>2)=0.5,故P(X>2.5)=P(X>2)-P(2
(2)若将该4例疑似病例样本进行化验,且方案二比方案一更“优”,求p的取值范围.
则这4例疑似病例中呈阳性的病例个数X的分布列为
方法总结二项分布的解题策略
对点训练1一家医药研究所从中草药中提取并合成了甲、乙两种抗“H病毒”的药物,经试验,服用甲、乙两种药物痊愈的概率分别为 ,现已进入药物临床试用阶段,每个试用组由4位该病毒的感染者组成,其中2人试用甲种抗病毒药物,2人试用乙种抗病毒药物.如果试用组中,甲种抗病毒药物治愈人数超过乙种抗病毒药物的治愈人数,那么称该组为“甲类组”.(1)求一个试用组为“甲类组”的概率;(2)观察3个试用组,用η表示这3个试用组中“甲类组”的个数,求η的分布列和均值.
典例突破例2.某高中学校德育处在全校组织了知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制)如下:52,63,67,68,72,76,76,76,82,88,93,94.(1)写出该样本的中位数,若该校共有3 000名学生,试估计该校测试成绩在70分以上的人数;(2)从所抽取的70分以上的学生中再随机选取4人,记ξ表示测试成绩在80分以上的人数,求ξ的分布列和均值.
方法总结求超几何分布的分布列的步骤
对点训练2(2023陕西西安一模)猜灯谜是我国一种民俗活动.某社区在元宵节当天举行了猜灯谜活动,工作人员给每位答题人提供了10道灯谜题目,答题人从中随机选取4道灯谜题目作答,若答对3道及以上灯谜题目,答题人便可获得奖品.已知甲能答对工作人员所提供的10道题中的6道.(1)求甲能获得奖品的概率;(2)记甲答对灯谜题目的数量为X,求X的分布列与均值.
考向1.正态分布的概率计算典例突破例3.(1)已知随机变量X服从正态分布N(2,σ2),且
(2)(2023广东佛山二模)佛山被誉为“南国陶都”,拥有上千年的制陶史,佛山瓷砖享誉海内外.某企业瓷砖生产线上生产的瓷砖某项指标X~N(800,σ2),且P(X<801)=0.6,现从该生产线上随机抽取10片瓷砖,记Y表示800≤X<801的瓷砖片数,则E(Y)= .
答案 (1)A (2)1
解析 (1)因为随机变量X服从正态分布N(2,σ2),由对称性可知,P(X<1)=P(X>3).
(2)因为X~N(800,σ2),均值为μ=800,且P(X<801)=0.6,所以P(800≤X<801)=P(X<801)-P(X<800)=0.6-0.5=0.1.由题可得Y~B(10,0.1),所以E(Y)=10×0.1=1.
名师点析正态分布下两类常见的概率计算(1)利用正态曲线的对称性研究相关概率问题,涉及的知识主要是“正态曲线关于直线x=μ对称”“曲线与x轴之间的区域的面积为1”.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于[μ-σ,μ+σ],[μ-2σ,μ+2σ],[μ-3σ,μ+3σ]中的哪一个.
对点训练3(1)已知随机变量X服从正态分布N(μ,σ2),若P(x>-1)+P(x≥5)=1,则μ=( )A.-1B.1C.-2D.2(2)已知某种袋装食品每袋质量X~N(500,16),则随机抽取10 000袋这种食品,袋装质量在区间[492,504]的约有 袋(质量单位:g).(附:X~N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7,P(μ-2σ≤X≤μ+2σ)≈0.954 5,P(μ-3σ≤X≤μ+3σ) ≈0.997 3).
答案 (1)D (2)8 186
解析 (1)因为随机变量X服从正态分布N(μ,σ2),则对称轴为X=μ.又P(X>-1)+P(X≥5)=1,而P(X>-1)+P(X≤-1)=1,所以P(X≥5)=P(X≤-1),所以5和-1关于对称轴对称,则μ= =2.故选D.
(2)由题意得P(500-4≤X≤500+4)≈0.682 7,P(500-8≤X≤500+8)≈0.954 5,
故P(492≤X≤504)≈0.135 9+0.682 7=0.818 6,则袋装质量在区间[492,504]的约有10 000×0.818 6=8 186(袋).
考向2.正态分布的实际应用典例突破例4.某省高考改革方案指出:该省高考考生总成绩将由语文、数学、英语3门统一高考成绩和学生从思想政治、历史、地理、物理、化学、生物学6门等级性考试科目中自主选择3个,在获得该次考试有效成绩的考生(缺考考生或未得分的考生除外)总人数的相应比例的基础上划分等级,位次由高到低分为A,B,C,D,E五等21级.该省的某市为了解本市9 630名学生的某次选考化学成绩水平,统计在全市范围内选考化学的原始成绩,发现其成绩服从正态分布N(69,49).现从某校随机抽取了50名学生,将所得成绩整理后,绘制出如图所示的频率分布直方图.
(2)现从该校50名考生成绩在[80,100]的学生中随机抽取两人,该两人成绩排名(从高到低)在全市前13名的人数记为X,求随机变量X的分布列.参考数据:若X~N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7,P(μ-2σ≤X≤μ+2σ)≈0.954 5,P(μ-3σ≤X≤μ+3σ)≈0.997 3.
所以0.001 35×9 630≈13,所以全市前13名的成绩在90分以上,该50名考生成绩中90分以上的有0.08×50=4(人).
名师点析解答正态分布的实际应用题,其关键是如何转化,同时应熟练掌握正态分布在[μ-σ,μ+σ],[μ-2σ,μ+2σ],[μ-3σ,μ+3σ]三个区间内取值的概率.在此过程中会用到归纳思想和数形结合思想.
对点训练4为了监控生产某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在[μ-3σ,μ+3σ]之外的零件数,求P(X≥1)及X的均值.(2)一天内抽检零件中,如果出现了尺寸在[μ-3σ,μ+3σ]之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:9.95,10.12,9.96,9.96,10.01,9.92,9.98,10.04,10.26,9.91,10.13,10.02,9.22,10.04,10.05,9.95.
解 (1)抽取的一个零件的尺寸在[μ-3σ,μ+3σ]之内的概率约为0.997 3,从而零件的尺寸在[μ-3σ,μ+3σ]之外的概率约为0.002 7,故X~B(16,0.002 7).因此P(X≥1)=1-P(X=0)=1-0.997 316≈0.042 3.E(X)≈16×0.002 7=0.043 2.(2)①如果生产状态正常,一个零件尺寸在[μ-3σ,μ+3σ]之外的概率只有0.002 7,一天内抽取的16个零件中,出现尺寸在[μ-3σ,μ+3σ]之外的零件的概率只有0.042 3,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.
2025版高考数学一轮总复习第10章计数原理概率随机变量及其分布第6讲二项分布与超几何分布课件: 这是一份2025版高考数学一轮总复习第10章计数原理概率随机变量及其分布第6讲二项分布与超几何分布课件,共60页。PPT课件主要包含了相互独立,np1-p,二项分布多维探究等内容,欢迎下载使用。
适用于新高考新教材备战2025届高考数学一轮总复习第11章计数原理概率随机变量及其分布第7节二项分布超几何分布正态分布课件新人教A版: 这是一份适用于新高考新教材备战2025届高考数学一轮总复习第11章计数原理概率随机变量及其分布第7节二项分布超几何分布正态分布课件新人教A版,共48页。PPT课件主要包含了强基础固本增分,研考点精准突破,目录索引,伯努利试验,XBnp,p1-p,np1-p,标准正态分布,常用结论,ξ的分布列为等内容,欢迎下载使用。
高考数学一轮总复习课件第9章计数原理概率随机变量及其分布第7讲条件概率二项分布与正态分布(含解析): 这是一份高考数学一轮总复习课件第9章计数原理概率随机变量及其分布第7讲条件概率二项分布与正态分布(含解析),共60页。PPT课件主要包含了条件概率,事件的相互独立性,全概率公式,2二项分布,正态分布,图9-7-1,题组一,走出误区,答案1×,2×3√等内容,欢迎下载使用。