19,重庆市第十八中学2023-2024学年八年级下学期期中数学试题(无答案)
展开这是一份19,重庆市第十八中学2023-2024学年八年级下学期期中数学试题(无答案),共6页。试卷主要包含了考试时间,以下不能构成直角三角形的是,估计的值在哪两个数之间,关于x的多项式等内容,欢迎下载使用。
(命题人:吴真红 审题人:石巧莉)
考试说明:1.考试时间:120分钟2.试题总分:150分3.试卷页数:4页
一、选择题(本大题10个小题,每小题4分,共40分)
1.我们生活的周边有形色各异的交通标识,交通标识中,属于轴对称图形的是( )
A.B.C.D.
2.已知代数式在实数范围内有意义,则x的取值范围是( )
A.B.C.且D.且
3.以下不能构成直角三角形的是( )
A.,,B.
C.D.
4.如图,已知四边形ABCD是平行四边形,下列结论不正确的是( )
A.当时,它是矩形B.当时,它是矩形
C.当BD平方时,它是菱形D.当且时,是正方形
5.估计的值在哪两个数之间( )
A.4与5B.5与6C.6与7D.7与8
6.已知函数的图象不过四象限,则函数的图象大致是( )
A.B.C.D.
7.如图,在平行四边ABCD中,对角线AC、BD相交于点O,.若点E,F分别为AD,AO的中点,连接EF,,,则四边形ABCD的周长为( )试卷源自 每日更新,汇集全国各地小初高最新试卷。
A.B.C.40D.24
8.观察下列一组图形中的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第200个图中共有点的个数是( )
A.60301B.60300C.40000D.40401
9.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲车先从A地沿这条公路匀速驶向C地,1小时后乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车与C地的距离(单位:km),(单位:km)与甲车行驶时间t(单位:h)之间的函数关系如图。其中正确的选项是( )
①甲车的行驶速度为60km/h;
②乙车的行驶速度为80km/h;
③求乙车出发2.5小时,两车相遇;
④两车相遇时,甲车距离C地.
A.①④B.②③C.①②③D.①②④
10.关于x的多项式:,其中n为正整数,各项系数各不相同且均不为0.当时,,交换任意两项的系数,得到的新多项式我们称为原多项式的“兄弟多项式”,给出下列说法:
①多项式共有6个不同的“兄弟多项式”;
②若多项式,则的所有系数之和为1;
③若多项式,则;
④若多项式,则.
则以上说法正确的个数为( )
A.1B.2C.3D.4
二、填空题(本大题8个小题,每小题4分,共32分)
11.计算.______.
12.如图所示,函数和的图象相交于点,则关于x的不等式的解集为______.
13.已知,则的值等于______.
14.若点,点,点都在一次函数的图象上,则与的大小关系是______.
15.把直线向左平移4个单位后,再上平移5个单位得到直线l,则直线l的解析式为______.
16.如图,在中,AD是的角平分线,,垂足为D,过D作交AB于点E,过D作交AC于点F,连接EF,已知,,则______.
17.已知关于x的分式方程的解为正数,关于y的不等式组有解且最多5个整数解,则所有符合条件的整数m之和为______.
18.如果一个三位自然数m的各数位上的数字均不相同且均不为0,且满足将m的各个数位中任取两个数位构成一个两位数这样就可以得到六个两位数,这六个两位数叫做m的“海纳数”例如:,则m的“海纳数”是57、75、58、85、78、87,m的所有“海纳数”之和与11的商记为,若,则______;若s和t是两个三位数,它们都有“海纳数”,,(,a、b、c均为整数),若的能被4整除,记,则p的最大值为______.
三、解答题(本大题8个小题,19题8分,其余每小题10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.
19.计算:
(1);(2).
20.先化简:,再从不等式组的解集中选一个合适的整数x的值代入求值.
21.如图,在正方形ABCD中,对角线AC、BD相交于点O,的平分线交BD于点E,连接CE.
(1)请用尺规完成基本作图:作的平分线CF交BD于点F,连接AF.(保留作图痕迹,不写作法,不写结论);
(2)由(1)中的作图,小明给出了证明四边形AFCE是菱形的步骤,请根据小明的思路完成下面的填空.
证明:∵四边形ABCD是正方形,
∴,,.
由.
∴①____________.
∵AE平分,CF平分.
∴,.
∴②____________.
∴.
又∵,.
∴③______.
∴.
∴四边形AFCE是④____________.
又∵⑤____________.
∴四边形AFCE是菱形.
22.2024年3月28日是第29个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某校八、九年级进行了校园安全知识竞赛,并从八、九年级各随机抽取了20名学生的竞赛成绩,进行了整理和分析(竞赛成绩用x表示,总分100分,80分及以上为优秀,共分为四个等级:A:,B:,C:,D:),部分信息如下:
八年级20名学生的竞赛成绩为:30,40,50,55,60,60,65,70,70,70,70,72,75,78,85,87,90,93,100,100.
九年级20名学生的竞赛成绩中B等级包含的所有数据为:
80,80,80,80,82.
根据以上信息,解答下列问题:
八、九年级抽取学生竞赛成绩统计表
(1)请填空:______,______,______;
(2)根据上述数据,你认为该校八、九年级的校园安全知识竞赛哪个年级的学生成绩更好?请说明理由(写出一条理由即可);
(3)若该校八、九年级参加本次竞赛活动的共有1000人,请估计该校八、九两个年级共有多少人成绩为优秀.
23.如图,在中,,,D为AC上一点,且.动点P以每秒1个单位长度的速度从点B出发至点C(点P不与BC两点重合),设点P运动的时间为x秒,的面积为y.
(1)直接写出y关于x的函数关系式,并注明x的取值范围;
(2)请在直角坐标系中画出y的函数图象,并写出该函数的一条性质;
(3)若与y的图象没有交点,请直接写出t的取值范围.
24.观音桥的某水果店花费6000元购进淡雪草莓,另花费1000元购进牛奶草莓,淡雪草莓的进价是牛奶草莓的进价的2倍,淡雪草莓的数量比牛奶草莓的数量多100千克.
(1)求牛奶草莓每千克的进价;
(2)该水果店第一周以40元/千克的价格售出牛奶草莓3m千克,第二周每千克售价降低了0.5m元,售出20千克,第三周售价在第一周的基础上打七折,购进的牛奶草莓剩余部分全部售罄、若购进的牛奶草莓总利润不低于796元,求m的最小值.
25.如图,经过点的直线AB与y轴交于点B,与直线交于点C,点C的横坐标为-2,点P是直线AC上的一个动点,过点P作y轴的平行线,分别交直线和x轴于点D,E,设动点P的横坐标为t.
(1)求直线AB所对应的函数表达式;
(2)当时,求t的值,并求出点P的坐标.
26.在中,,E为平面内一点,连接AE、CE.
(1)如图1,若点E在线段BC上,,,,求线段AC的长;
(2)如图2,若点E在内部,,,求证:;
(3)如图3,若点E在内部,连接BE,,,请直接写出的最小值.年级
平均数
众数
中位数
优秀率
八年级
71
a
70
30%
九年级
71
80
b
c%
相关试卷
这是一份15,重庆市第十八中学2023-2024学年八年级下学期期中数学试题,共26页。试卷主要包含了考试时间等内容,欢迎下载使用。
这是一份12,重庆市长寿区长寿中学校2023-2024学年七年级下学期期中数学试题(无答案),共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份重庆市长寿中学校2023-2024学年八年级下学期4月期中考试数学试题(无答案),共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。