所属成套资源:【三轮冲刺复习】高考数学三轮冲刺复习(大题培优)
【三轮冲刺】高考数学(大题培优)05圆锥曲线
展开
这是一份【三轮冲刺】高考数学(大题培优)05圆锥曲线,文件包含三轮冲刺高考数学大题培优05圆锥曲线原卷版docx、三轮冲刺高考数学大题培优05圆锥曲线解析版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。
【题型一】轨迹
1.(2024·重庆·模拟预测)已知点和直线,点到的距离 .
(1)求点的轨迹方程;
(2)不经过圆点的直线与点的轨迹交于,两点. 设直线,的斜率分别为,,记 ,是否存在值使得的面积为定值,若存在,求出的值;若不存在,说明理由.
2.(2024·辽宁·一模)已知平面上一动点到定点的距离比到定直线的距离小,记动点的轨迹为曲线.
(1)求的方程;
(2)点为上的两个动点,若恰好为平行四边形的其中三个顶点,且该平行四边形对角线的交点在第一、三象限的角平分线上,记平行四边形的面积为,求证:.
3.(2024·山东淄博·一模)在平面直角坐标系xOy中,点.点是平面内的动点.若以PF 为直径的圆与圆 相切,记点 P 的轨迹为曲线C.
(1)求C的方程;
(2)设点,直线 AM ,AN 分别与曲线C交于点S,T (S,T 异于 A),过点A作,垂足为 H,求的最大值.
【题型二】新结构卷中19题“定义”型轨迹
1.(2024·新疆乌鲁木齐·二模)在平面直角坐标系中,重新定义两点之间的“距离”为,我们把到两定点的“距离”之和为常数的点的轨迹叫“椭圆”.
(1)求“椭圆”的方程;
(2)根据“椭圆”的方程,研究“椭圆”的范围、对称性,并说明理由;
(3)设,作出“椭圆”的图形,设此“椭圆”的外接椭圆为的左顶点为,过作直线交于两点,的外心为,求证:直线与的斜率之积为定值.
2.(2024·湖南·二模)直线族是指具有某种共同性质的直线的全体,例如表示过点的直线,直线的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.
(1)若圆是直线族的包络曲线,求满足的关系式;
(2)若点不在直线族:的任意一条直线上,求的取值范围和直线族的包络曲线;
(3)在(2)的条件下,过曲线上两点作曲线的切线,其交点为.已知点,若三点不共线,探究是否成立?请说明理由.
3.(2024·全国·模拟预测)已知复平面上的点对应的复数满足,设点的运动轨迹为.点对应的数是0.
(1)证明是一个双曲线并求其离心率;
(2)设的右焦点为,其长半轴长为,点到直线的距离为(点在的右支上),证明:;
(3)设的两条渐近线分别为,过分别作的平行线分别交于点,则平行四边形的面积是否是定值?若是,求该定值;若不是,说明理由.
【题型三】直线所过定点不在坐标轴上
1.已知点M是抛物线的对称轴与准线的交点,过M作抛物线的一条切线,切点为P,且满足.
(1)求抛物线C的方程;
(2)过作斜率为2的直线与抛物线C相交于点B,点,直线AT与BT分别交抛物线C于点E,F,设直线EF的斜率为k,是否存在常数,使得?若存在,求出值;若不存在,请说明理由.
2.已知双曲线:(,)的离心率为,点到其左右焦点,的距离的差为2.
(1)求双曲线的方程;
(2)在直线上存在一点,过作两条相互垂直的直线均与双曲线相切,求的取值范围.
3.已知双曲线C:上任意一点Q(异于顶点)与双曲线两顶点连线的斜率之积为,E在双曲线C上,F为双曲线C的右焦点,|EF|的最小值为.
(1)求双曲线C的标准方程;
(2)过椭圆上任意一点P(P不在C的渐近线上)分别作平行于双曲线两条渐近线的直线,交两渐近线于M,N两点,且,是否存在m,n使得椭圆的离心率为?若存在,求出椭圆的方程,若不存在,说明理由.
【题型四】面积比值范围型
1.(2022·全国·高三专题练习)是椭圆的右焦点,其中.点、分别为椭圆的左、右顶点,圆过点与坐标原点,是椭圆上异于、的动点,且的周长小于.
(1)求的标准方程;
(2)连接与圆交于点,若与交于点,求的取值范围.
2.(2023下·福建福州·高三校考)如图,已知圆的左顶点,过右焦点F的直线l与椭圆C相交于M,N两点,当直线轴时,.
(1)求椭圆C的方程;
(2)记的面积分别为,求的取值范围.
3.(2022·湖北黄冈·蕲春县第一高级中学校考模拟预测)已知椭圆的左、右顶点分别为,左、右焦点分别为,圆,椭圆与圆交于点,且.
(1)求椭圆方程.
(2)若过椭圆右焦点的直线与椭圆交于两点,与圆交于两点,且,求的取值范围.
【题型五】非常规型四边形面积最值型
1.(2023·全国·高三专题练习)已知圆为坐标原点,点在圆上运动,为过点的圆的切线,以为准线的拋物线恒过点,抛物线的焦点为,记焦点的轨迹为.
(1)求的方程;
(2)过动点的两条直线均与曲线相切,切点分别为,且的斜率之积为,求四边形面积的取值范围.
2.(2023·全国·高三专题练习)已知是椭圆的左右焦点,以为直径的圆和椭圆在第一象限的交点为,若三角形的面积为1,其内切圆的半径为.
(1)求椭圆的方程;
(2)已知A是椭圆的上顶点,过点的直线与椭圆交于不同的两点,点在第二象限,直线分别与轴交于,求四边形面积的最大值.
3.(2023·全国·高三专题练习)如图.已知圆,圆.动圆与这两个圆均内切.
(1)求圆心的轨迹的方程;
(2)若、是曲线上的两点,是曲线C上位于直线两侧的动点.若直线的斜率为,求四边形面积的最大值.
【题型六】“三定”型:圆过定点
1.已知椭圆的左、右顶点分别为,且,离心率为.
(1)求椭圆的方程;
(2)设是椭圆上不同于的一点,直线,与直线分别交于点.试判断以为直径的圆是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.
2.已知椭圆经过点,且右焦点为.
(1)求椭圆C的标准方程;
(2)过点的直线与椭圆交于两个不同的点,,直线与轴交于点,直线与轴交于点,问以为直径的圆是否过轴上的定点,若是求出定点坐标,若不是说明理由.
3.已知双曲线的左顶点为,过左焦点的直线与交于两点.当轴时,,的面积为3.
(1)求的方程;
(2)证明:以为直径的圆经过定点.
【题型七】“三定”型:斜率和定
1.已知点F是椭圆的右焦点,P是椭圆E的上顶点,O为坐标原点且.
(1)求椭圆的离心率e;
(2)已知,,过点M作任意直线l与椭圆E交于A,B两点.设直线,的斜率分别为,,若,求椭圆E的方程.
2..在平面直角坐标系中,己知圆心为点Q的动圆恒过点,且与直线相切,设动圆的圆心Q的轨迹为曲线.
(Ⅰ)求曲线的方程;
(Ⅱ)过点F的两条直线、与曲线相交于A、B、C、D四点,且M、N分别为、的中点.设与的斜率依次为、,若,求证:直线MN恒过定点.
3.已知右焦点为的椭圆经过点.
(1)求椭圆的方程;
(2)经过的直线与椭圆分别交于、(不与点重合),直线、分别与轴交于、,是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.
【题型八】“三定”型:斜率积定
1.已知椭圆经过点,其左焦点为.
(1)求椭圆C的标准方程;
(2)椭圆C的右顶点为A,若点P,Q在椭圆C上,且满足直线AP与AQ的斜率之积为,证明:直线PQ过定点.
2.已知椭圆的左、右顶点分别为A,B.直线l与C相切,且与圆交于M,N两点,M在N的左侧.
(1)若直线l的斜率,求原点O到直线l的距离;
(2)记直线AM,BN的斜率分别为,,证明:为定值.
3..已知椭圆的离心率为,短轴长为2.
(1)求椭圆E的方程;
(2)如图,已知A,B,C为椭圆E上三个不同的点,原点O为的重心;
①如果直线AB,OC的斜率都存在,求证:为定值;
②试判断的面积是否为定值,如果是,求出这个定值;如果不是,请说明理由.
【题型九】圆锥曲线切线型
1.已知椭圆E:的焦距为,且经过点.
(1)求椭圆E的标准方程:
(2)过椭圆E的左焦点作直线l与椭圆E相交于A,B两点(点A在x轴上方),过点A,B分别作椭圆的切线,两切线交于点M,求的最大值.
2.已知椭圆的左、右焦点分别为,焦距为2,上一点到距离之和为6.
(1)求的方程;
(2)设在点处的切线交轴于点,证明:.
3.法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线问题时发现了一个有趣的重要结论:一椭圆的任两条互相垂直的切线交点的轨迹是一个圆,尊称为蒙日圆,且蒙日圆的圆心是该椭圆的中心,半径为该椭圆的长半轴与短半轴平方和的算术平方根.已知在椭圆中,离心率,左、右焦点分别是、,上顶点为Q,且,O为坐标原点.
(1)求椭圆C的方程,并请直接写出椭圆C的蒙日圆的方程;
(2)设P是椭圆C外一动点(不在坐标轴上),过P作椭圆C的两条切线,过P作x轴的垂线,垂足H,若两切线斜率都存在且斜率之积为,求面积的最大值.
【题型十】“韦达定理”不能直接用
1.已知椭圆的上下两个焦点分别为,过点与轴垂直的直线交椭圆于 两点,的面积为,椭圆的离心率为.
(1)求椭圆的标准方程;
(2)已知为坐标原点,直线与轴交于点,与椭圆交于两个不同的点,若存在实数,使得,求的取值范围.
2.在平面直角坐标系中,动点与定点的距离和到定直线的距离的比是常数,点M的轨迹为曲线E.
(1)求E的方程;
(2)直线l交曲线E于P,Q两点,交x轴于N点,交y轴于R点,若,若,求点N的坐标.
3.已知椭圆,倾斜角为的直线过椭圆的左焦点和上顶点B,且(其中A为右顶点).
(1)求椭圆C的标准方程;
(2)若过点的直线l与椭圆C交于不同的两点P,Q,且,求实数m的取值范围.
【题型十一】“非韦达”型:点带入型
1.已知为椭圆上的动点,过点作轴的垂线段,为垂足,点满足.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)若两点分别为椭圆的左右顶点,为椭圆的左焦点,直线与椭圆交于点,直线的斜率分别为,求的取值范围.
2.如图,在平面直角坐标系中,椭圆:的离心率为,上顶点到右焦点的距离为.过点作不垂直于轴,轴的直线,交椭圆于,两点,为线段的中点,且.
(1)求椭圆的方程;
(2)求实数的取值范围;
(3)延长交椭圆于点,记与的面积分别为,,若,求直线的方程.
3.在平面直角坐标系中,已知椭圆的左焦点为,点在椭圆上.
(1)求椭圆的方程;
(2)已知圆,连接并延长交圆于点为椭圆长轴上一点(异于左、右焦点),过点作椭圆长轴的垂线分别交椭圆和圆于点(均在轴上方).连接,记的斜率为,的斜率为.
①求的值;
②求证:直线的交点在定直线上.
4.已知双曲线:,,,,,五点中恰有三点在上.
(1)求的方程;
(2)设是上位于第一象限内的一动点,则是否存在定点,使得,若存在,求出点的坐标;若不存在,请说明理由.
目录
TOC \ "1-1" \h \u \l "_Tc4071" 【题型一】轨迹 PAGEREF _Tc4071 \h 1
\l "_Tc22065" 【题型二】新结构卷中19题“定义”型轨迹 PAGEREF _Tc22065 \h 2
\l "_Tc20820" 【题型三】直线所过定点不在坐标轴上 PAGEREF _Tc20820 \h 3
\l "_Tc1490" 【题型四】面积比值范围型 PAGEREF _Tc1490 \h 4
\l "_Tc1749" 【题型五】非常规型四边形面积最值型 PAGEREF _Tc1749 \h 5
\l "_Tc14276" 【题型六】“三定”型:圆过定点 PAGEREF _Tc14276 \h 6
\l "_Tc6847" 【题型七】“三定”型:斜率和定 PAGEREF _Tc6847 \h 7
\l "_Tc7020" 【题型八】“三定”型:斜率积定 PAGEREF _Tc7020 \h 8
\l "_Tc15290" 【题型九】圆锥曲线切线型 PAGEREF _Tc15290 \h 9
\l "_Tc22080" 【题型十】“韦达定理”不能直接用 PAGEREF _Tc22080 \h 10
\l "_Tc11537" 【题型十一】“非韦达”型:点带入型 PAGEREF _Tc11537 \h 11
求轨迹方程的常见方法有:
(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;
(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;
(3)相关点法:用动点的坐标、表示相关点的坐标、,然后代入点的坐标所满足的曲线方程,整理化简可得出动点的轨迹方程;
(4)参数法:当动点坐标、之间的直接关系难以找到时,往往先寻找、与某一参数得到方程,即为动点的轨迹方程;
(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.
存在性问题求解的思路及策略
(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.
(2)策略:①当条件和结论不唯一时要分类讨论;
②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;
③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.
圆锥曲线中取值范围问题的五种求解策略:
(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;
(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;
(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;
(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;
(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.
求非常规型四边形的面积最大值,首先要选择合适的面积公式,对于非常规四边形,如果使用的面积公式为,为此计算, 代入转化为的函数求最大值.
圆过定点思维:
1.可以根据特殊性,计算出定点,然后证明
2.利用以“某线段为直径”,转化为向量垂直计算
2.利用对称性,可以猜想出定点,并证明。
4.通过推导求出定点(计算推导难度较大)
设抛物线,其上有不同的三点:,
当的斜率满足:
①时,过定点
②时,过定点或者
给定椭圆,与椭圆上定点,过P点走两条射线PA、PB,与椭圆交与A和B两点,记直线PA、PB的斜率分别为K1,K2,则有
①若,则直线过定点
②若,则直线过定点
在利用椭圆(双曲线)的切线方程时,一般利用以下方法进行直线:
(1)设切线方程为与椭圆方程联立,由进行求解;
(2)椭圆(双曲线)在其上一点的切线方程为,再应用此方程时,首先应证明直线与椭圆(双曲线)相切.
双曲线的以为切点的切线方程为
抛物线的切线:
(1)点是抛物线上一点,则抛物线过点P的切线方程是:;
(2)点是抛物线上一点,则抛物线过点P的切线方程是:.
1.利用公式,可消去参数
2.可以直接借助韦达定理反解消去两根
定比分点型,即题中向量(或者线段长度满足)可以利用公式,可消去
相关试卷
这是一份【三轮冲刺】高考数学(大题培优)02 数列综合大题归类,文件包含三轮冲刺高考数学大题培优02数列综合大题归类原卷版docx、三轮冲刺高考数学大题培优02数列综合大题归类解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份【三轮冲刺】高考数学(大题专练)05 函数与导数(解析版),共66页。
这是一份【三轮冲刺】高考数学(大题专练)04 圆锥曲线(解析版),共77页。