数学(广东专用01,新题型结构)-2024年高考数学押题预测卷
展开2、锻炼同学的考试心理,训练学生快速进入考试状态。高考的最佳心理状态是紧张中有乐观,压力下有自信,平静中有兴奋。
3、训练同学掌握一定的应试技巧,积累考试经验。模拟考试可以训练答题时间和速度。高考不仅是知识和水平的竞争,也是时间和速度的竞争,可以说每分每秒都是成绩。
4、帮助同学正确评估自己。高考是一种选拨性考试,目的是排序和择优,起决定作用的是自己在整体中的相对位置。因此,模拟考试以后,同学们要想法了解自己的成绩在整体中的位置。
绝密★启用前
2024年高考押题预测卷【广东专用01】
数 学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知某地最近天每天的最高气温(单位:)分别为,则天最高气温的第百分位数是( )
A.15B.21C.D.22
2.已知向量,若向量满足,且,则的值是( )
A.B.12C.20D.
3.已知数列为等比数列,为数列的前项和.若成等差数列,则( )
A. B.C.D.
4.已知函数,,那么“”是“在上是增函数”的( )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
5.“142857”这一串数字被称为走马灯数,是世界上著名的几个数之一,当142857与1至6中任意1个数字相乘时,乘积仍然由1,4,2,8,5,7这6个数字组成.若从1,4,2,8,5,7这6个数字中任选4个数字组成无重复数字的四位数,则在这些组成的四位数中,大于5200的偶数个数是( )
A.87B.129C.132D.138
6.如图,四棱锥是棱长均为2的正四棱锥,三棱锥是正四面体,为的中点,则下列结论错误的是( )
A.点共面 B.平面平面 C.D.平面
7.已知函数对均满足,其中是的导数,则下列不等式恒成立的是( )
A. B. C.D.
8.已知椭圆的左焦点为,过作圆的一条切线交椭圆于,两点,若,则椭圆的离心率为( )
A.B.C.D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.已知复数,则下列命题正确的是( )
A.若,则B.若,则
C.若是非零复数,且,则D.若是非零复数,则
10.在中,角所对的边分别为,且,则下列结论正确的有( )
A.
B.若,则为直角三角形
C.若为锐角三角形,的最小值为1
D.若为锐角三角形,则的取值范围为
11.已知函数的定义域和值域均为,对于任意非零实数,函数满足:,且在上单调递减,,则下列结论错误的是( )
A.B.
C.在定义域内单调递减D.为奇函数
第二部分(非选择题 共92分)
三、填空题:本题共3小题,每小题5分,共15分。
12.已知集合,则 .
13.若的展开式中有理项的系数和为2,则展开式中的系数为 .
14.如图,将正四面体每条棱三等分,截去顶角所在的小正四面体,余下的多面体就成为一个半正多面体,亦称“阿基米德体”.点A,B,M是该多面体的三个顶点,点N是该多面体表面上的动点,且总满足,若,则该多面体的表面积为 ,点N轨迹的长度为 .
四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步棸。
15.(13分)已知函数的图象经过点,且是的极值点.
(1)求函数的解析式;(2)求函数的单调区间和最值.
16.(15分)如图1,在等边三角形中,,点分别是的中点.如图2,以为折痕将折起,使点A到达点的位置(平面),连接.
(1)证明:平面平面;(2)当时,求直线与平面所成角的正弦值.
17.(15分)已知某种机器的电源电压U(单位:V)服从正态分布.其电压通常有3种状态:①不超过200V;②在200V~240V之间③超过240V.在上述三种状态下,该机器生产的零件为不合格品的概率分别为0.15,0.05,0.2.
(1)求该机器生产的零件为不合格品的概率;
(2)从该机器生产的零件中随机抽取n()件,记其中恰有2件不合格品的概率为,求取得最大值时n的值.
附:若,取,.
18.(17分)如图,已知四边形的四个顶点都在抛物线上,且A,B在第一象限,轴,抛物线在点A处的切线为l,且.
(1)设直线的斜率分别为k和,求的值;
(2)P为与的交点,设的面积为,的面积为,若,求的取值范围.
19.(17分)已知数列的前项和为,若数列满足:①数列项数有限为;②;③,则称数列为“阶可控摇摆数列”.
(1)若等比数列为“10阶可控摇摆数列”,求的通项公式;
(2)若等差数列为“阶可控摇摆数列”,且,求数列的通项公式;
(3)已知数列为“阶可控摇摆数列”,且存在,使得,探究:数列能否为“阶可控摇摆数列”,若能,请给出证明过程;若不能,请说明理由.
2024年高考押题预测卷—数学(广东专用01,新题型结构)(考试版): 这是一份2024年高考押题预测卷—数学(广东专用01,新题型结构)(考试版),共4页。
2024年高考押题预测卷—数学(广东专用03,新题型结构)(考试版): 这是一份2024年高考押题预测卷—数学(广东专用03,新题型结构)(考试版),共6页。
2024年高考押题预测卷—数学(广东专用03,新题型结构)(解析版): 这是一份2024年高考押题预测卷—数学(广东专用03,新题型结构)(解析版),共12页。