数学(广东专用02,新题型结构)-2024年高考数学押题预测卷
展开2、锻炼同学的考试心理,训练学生快速进入考试状态。高考的最佳心理状态是紧张中有乐观,压力下有自信,平静中有兴奋。
3、训练同学掌握一定的应试技巧,积累考试经验。模拟考试可以训练答题时间和速度。高考不仅是知识和水平的竞争,也是时间和速度的竞争,可以说每分每秒都是成绩。
4、帮助同学正确评估自己。高考是一种选拨性考试,目的是排序和择优,起决定作用的是自己在整体中的相对位置。因此,模拟考试以后,同学们要想法了解自己的成绩在整体中的位置。
绝密★启用前
2024年高考押题预测卷【广东专用02】
数 学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数满足,则( )
A.2B.1C.D.
2.已知集合,则( )
A.B.C.D.
3.在平行四边形中,点满足,则( )
A.B.
C.D.
4.记等差数列的前项和为,则( )
A.14B.72C.36D.60
5.湖南省衡阳市的来雁塔,始建于明万历十九年(1591年),因鸿雁南北迁徙时常在境内停留而得名.1983年被湖南省人民政府公布为重点文物保护单位.为测量来雁塔的高度,因地理条件的限制,分别选择C点和一建筑物DE的楼顶E为测量观测点,已知点A为塔底,在水平地面上,来雁塔AB和建筑物DE均垂直于地面(如图所示).测得,在C点处测得E点的仰角为30°,在E点处测得B点的仰角为60°,则来雁塔AB的高度约为( )(,精确到)
A.B.C.D.
6.已知是函数的极小值点,则的取值范围为( )
A.B.C.D.
7.已知为圆上的动点,点满足,记的轨迹为,则下列说法错误的是( )
A.轨迹是一个半径为3的圆
B.圆与轨迹有两个交点
C.过点作圆的切线,有两条切线,且两切点的距离为
D.点为直线上的动点,则PB的最小值为
8.在侧棱长为2的正三棱锥中,点为线段上一点,且,则以为球心,为半径的球面与该三棱锥三个侧面交线长的和为( )
A.B.C.D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.下图是样本甲与样本乙的频率分布直方图,下列说法判断正确的是( )
A.样本乙的极差一定大于样本甲的极差
B.样本乙的众数一定大于样本甲的众数
C.样本甲的方差一定大于样本乙的方差
D.样本甲的中位数一定小于样本乙的中位数
10.下列对函数的判断中,正确的有( )
A.函数为奇函数B.函数的最大值为
C.函数的最小正周期为D.直线是函数图象的一条对称轴
11.设为坐标原点,抛物线的焦点为,准线与轴的交点为,过点的直线与抛物线交于两点,过点分别作的垂线,垂足分别为,,则下列说法正确的有( )
A.B.
C.D.
第二部分(非选择题 共92分)
三、填空题:本题共3小题,每小题5分,共15分。
12.的展开式中的系数为 .
13.将一个直角三角板放置在桌面上方,如图,记直角三角板为,其中,记桌面为平面.若,且与平面所成的角为,则点到平面的距离的最大值为 .
14.若实数,满足,则 .
四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步棸。
15.(13分)
在平面直角坐标系中,点的坐标分别为,以为圆心作一个半径为4的圆,点是圆上一动点,线段的重直平分线与直线相交于点.
(1)求的轨迹的方程;
(2)已知,点是轨迹在第一象限内的一点,为的中点,若直线的斜率为,求点的坐标.
16.(15分)
在三棱柱中,已知,,,,M是BC的中点.
(1)求证:;
(2)在棱上是否存在点P,使得二面角的正弦值为?若存在,求线段AP的长度;若不存在,请说明理由.
17.(15分)
某校为了丰富课余活动,同时训练学生的逻辑思维能力,在高中三个年级举办中国象棋盲棋比赛,经过各年级初赛,高一、高二、高三分别有3人,4人,5人进入决赛,决赛采取单循环方式,即每名队员与其他队员都要进行1场比赛(每场比赛都采取5局3胜制,初赛、决赛的赛制相同,记分方式相同),最后根据积分选出冠军,积分规则如下:比赛中以3∶0或3∶1取胜的队员积3分,失败的队员积0分;而在比赛中以3∶2取胜的队员积2分,失败的队员积1分.
(1)从进入决赛的12人中随机抽取2人进行表演赛,这2人恰好来自不同年级的概率是多少?
(2)初赛时,高三甲、乙两同学对局,设每局比赛甲取胜的概率均为,记甲以取胜的概率为,当最大时,甲处于最佳竞技状态.在决赛阶段甲、乙对局,而且甲的竞技状态最好,求甲所得积分的分布列及期望.
18.(17分)
已知函数.
(1)讨论函数的单调性;
(2)若存在正数,使成立,求的取值范围;
(3)若,证明:对任意,存在唯一的实数,使得成立.
19.(17分)
已知是由正整数组成的无穷数列,该数列前项的最大值记为,即;前项的最小值记为,即,令(),并将数列称为的“生成数列”.
(1)若,求其生成数列的前项和;
(2)设数列的“生成数列”为,求证:;
(3)若是等差数列,证明:存在正整数,当时,,,,是等差数列.
数学(广东专用03,新题型结构)-2024年高考数学押题预测卷: 这是一份数学(广东专用03,新题型结构)-2024年高考数学押题预测卷,文件包含数学广东专用03新题型结构全解全析docx、数学广东专用03新题型结构参考答案docx、数学广东专用03新题型结构考试版A4docx、数学广东专用03新题型结构考试版A3docx、数学广东专用03新题型结构答题卡pdf等5份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
数学(广东专用01,新题型结构)-2024年高考数学押题预测卷: 这是一份数学(广东专用01,新题型结构)-2024年高考数学押题预测卷,文件包含数学广东专用01新题型结构全解全析docx、数学广东专用01新题型结构参考答案docx、数学广东专用01新题型结构考试版A4docx、数学广东专用01新题型结构考试版A3docx、数学广东专用01新题型结构答题卡pdf等5份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
2024年高考押题预测卷—数学(广东专用02,新题型结构)(考试版): 这是一份2024年高考押题预测卷—数学(广东专用02,新题型结构)(考试版),共6页。