资料中包含下列文件,点击文件名可预览资料内容
![专题5.11 相交线与平行线章末八大题型总结(拔尖篇)(人教版)(原卷版)第1页](http://www.enxinlong.com/img-preview/2/3/15781945/0-1716639317627/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题5.11 相交线与平行线章末八大题型总结(拔尖篇)(人教版)(原卷版)第2页](http://www.enxinlong.com/img-preview/2/3/15781945/0-1716639317680/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题5.11 相交线与平行线章末八大题型总结(拔尖篇)(人教版)(原卷版)第3页](http://www.enxinlong.com/img-preview/2/3/15781945/0-1716639317706/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题5.11 相交线与平行线章末八大题型总结(拔尖篇)(人教版)(解析版)第1页](http://www.enxinlong.com/img-preview/2/3/15781945/1-1716639329051/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题5.11 相交线与平行线章末八大题型总结(拔尖篇)(人教版)(解析版)第2页](http://www.enxinlong.com/img-preview/2/3/15781945/1-1716639329076/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题5.11 相交线与平行线章末八大题型总结(拔尖篇)(人教版)(解析版)第3页](http://www.enxinlong.com/img-preview/2/3/15781945/1-1716639329101/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
还剩12页未读,
继续阅读
所属成套资源:2023-2024学年七年级数学下册举一反三系列(人教版)
成套系列资料,整套一键下载
专题5.11 相交线与平行线章末八大题型总结(拔尖篇)(原卷版+解析版)
展开这是一份专题5.11 相交线与平行线章末八大题型总结(拔尖篇)(原卷版+解析版),文件包含专题511相交线与平行线章末八大题型总结拔尖篇人教版原卷版docx、专题511相交线与平行线章末八大题型总结拔尖篇人教版解析版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
专题5.11 相交线与平行线章末八大题型总结(拔尖篇)【人教版】TOC \o "1-3" \h \u HYPERLINK \l "_Toc28476" 【题型1 平行线在三角板中的运用】 PAGEREF _Toc28476 \h 1 HYPERLINK \l "_Toc24645" 【题型2 平行线在折叠中的运用】 PAGEREF _Toc24645 \h 15 HYPERLINK \l "_Toc8140" 【题型3 旋转使平行】 PAGEREF _Toc8140 \h 21 HYPERLINK \l "_Toc25987" 【题型4 利用平行线求角度之间的关系】 PAGEREF _Toc25987 \h 25 HYPERLINK \l "_Toc4842" 【题型5 利用平行线解决角度定值问题】 PAGEREF _Toc4842 \h 36 HYPERLINK \l "_Toc11458" 【题型6 平行线的阅读理解类问题】 PAGEREF _Toc11458 \h 45 HYPERLINK \l "_Toc24577" 【题型7 平行线的性质在生活中的应用】 PAGEREF _Toc24577 \h 55 HYPERLINK \l "_Toc20249" 【题型8 平行线与动点的综合应用】 PAGEREF _Toc20249 \h 59【题型1 平行线在三角板中的运用】【例1】(2023下·浙江温州·七年级校考期中)将一副直角三角板如图1,摆放在直线MN上(直角三角板ABC和直角三角板EDC,∠EDC=90°,∠DEC=60°,∠ABC=90°,∠BAC=45°),保持三角板EDC不动,将三角板ABC绕点C以每秒5°的速度,顺时针方向旋转,旋转时间为t秒,当AC与射线CN重合时停止旋转. (1)如图2,当AC为∠DCE的角平分线时,直接写出此时t的值;(2)当AC旋转至∠DCE的内部时,求∠DCA与∠ECB的数量关系.(3)在旋转过程中,当三角板ABC的其中一边与ED平行时,请直接写出此时t的值.【答案】(1)3(2)∠ECB−∠DCA=15°(3)15或24或33【分析】(1)根据角平分线的定义求出∠ACE=12∠DCE=15°,然后求出t的值即可;(2)根据旋转得:∠ACE=5t,表示出∠DCA=30°−5t,∠ECB=45°−5t,即可得出∠ECB−∠DCA=15°;(3)分三种情况进行讨论,分别画出图形,求出t的值即可.【详解】(1)解:如图2,∵∠EDC=90°,∠DEC=60°, ∴∠DCE=30°,∵AC平分∠DCE,∴∠ACE=12∠DCE=15°,∴t=155=3,答:此时t的值是3;(2)解:当AC旋转至∠DCE的内部时,如图3; 由旋转得:∠ACE=5t,∴∠DCA=30°−5t,∠ECB=45°−5t,∴∠ECB−∠DCA=45°−5t−30°−5t=15°;(3)解:分三种情况:①当AB∥DE时,如图4, 此时BC与CD重合,t=30+45÷5=15;②当AC∥DE时,如图5, ∵AC∥DE,∴∠ACD=∠D=90°,∴∠ACE=90°+30°=120°,t=120÷5=24;③当BC∥DE时,如图6, ∵BC∥DE∴∠BCD=∠CDE=90°∴∠ACD=90°+30°+45°=165°∴t=165÷5=33综上,t的值是15或24或33.故答案为:15或24或33.【点睛】本题主要考查了旋转的性质,角平分线的计算,平行线的性质,解题的关键是数形结合,注意分类讨论.【变式1-1】(2023下·河南安阳·七年级统考期末)如图1,将一副三角板中的两个直角顶点C叠放在一起,其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)观察猜想,∠BCD与∠ACE的数量关系是________;∠BCE与∠ACD的数量关系是________;(2)类比探究,若按住三角板ABC不动,顺时针绕直角顶点C转动三角形DCE,试探究当∠ACD等于多少度时CE//AB,画出图形并简要说明理由;(3)拓展应用,若∠BCE=3∠ACD,求∠ACD的度数;并直接写出此时DE与AC的位置关系.【答案】(1)∠BCD=∠ACE,∠BCE+∠ACD=180°(2)当∠ACD=60°或120°时,CE//AB(3)∠ACD=45°,AC⊥DE或AC//DE【分析】(1)由三角板的特点可知∠ACB=∠DCE=90°,即可求出∠BCD=∠ACE.再根据∠BCE=∠ACB+∠ACE,∠ACD=∠DCE−∠ACE,即可求出∠BCE+∠ACD=180°;(2)分类讨论结合平行线的性质即可求解;(3)由(1)∠BCE+∠ACD=180°,即可求出∠ACD=45°,再分类讨论结合平行线的判定和性质即可得出DE与AC的位置关系.【详解】(1)∵∠ACB=∠DCE=90°,∴∠ACB−∠ACD=∠DCE−∠ACD,即∠BCD=∠ACE.∵∠BCE=∠ACB+∠ACE,∠ACD=∠DCE−∠ACE,∴∠BCE+∠ACD=∠ACB+∠DCE=90°+90°=180°.故答案为:∠BCD=∠ACE,∠BCE+∠ACD=180°;(2)分类讨论:①如图1所示,∵CE//AB,∴∠ACE=∠BAC=30°,∴∠ACD=∠DCE−∠ACE=90°−30°=60°;②如图2所示,∵CE//AB,∴∠BCE=∠B=60°,∴∠ACD=360°−∠ACB−∠DCE−∠BCE=360°−90°−90°−60°=120°.综上可知当∠ACD=60°或120°时,CE//AB;(3)根据(1)可知∠BCE+∠ACD=180°,∴3∠ACD+∠ACD=180°,∴∠ACD=45°.分类讨论:①如图3所示, ∵∠ACD=45°,∴∠BCD=45°=∠CDE,∴BC//DE.∵∠ACB=90°,即AC⊥BC,∴AC⊥DE;②如图4所示,∵∠ACD=45°,∴∠ACD=45°=∠CDE,∴AC//DE.【点睛】本题考查三角板中的角度计算,平行线的判定和性质.利用数形结合和分类讨论的思想是解题关键.【变式1-2】(2023上·湖南长沙·七年级校考期末)如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)①如图1,∠DPC= 度.②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”.(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①∠CPD∠BPN为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明.【答案】(1)①90;②t为3s或6s或9s或18s或21s或24s或27s;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:∠DPC=180°−∠CPA−∠DPB,从而可得答案;②当BD//PC时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当PA//BD时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当AC//DP时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当AC//BD时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当AC//BP时的旋转时间与PA//BD相同;(2)分两种情况讨论:当PD在MN上方时,当PD在MN下方时,①分别用含t的代数式表示∠CPD,∠BPN,从而可得∠CPD∠BPN的值;②分别用含t的代数式表示∠CPD,∠BPN,得到∠BPN+∠CPD是一个含t的代数式,从而可得答案.【详解】解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180﹣30﹣60=90°,故答案为90;②如图1﹣1,当BD∥PC时,∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠CPA=60°,∴∠APN=30°,∵转速为10°/秒,∴旋转时间为3秒;如图1﹣2,当PC∥BD时,∵PC//BD,∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,∵转速为10°/秒,∴旋转时间为21秒,如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC绕点P逆时针旋转的角度为90°,∵转速为10°/秒,∴旋转时间为9秒,如图1﹣4,当PA∥BD时,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,∵转速为10°/秒,∴旋转时间为27秒,如图1﹣5,当AC∥DP时,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC绕点P逆时针旋转的角度为60°,∵转速为10°/秒,∴旋转时间为6秒,如图1﹣6,当AC//DP时, ∵AC//DP, ∴∠DPA=∠PAC=90°, ∠DPN+∠DPA=180°−30°+90°=240°, ∴三角板PAC绕点P逆时针旋转的角度为240°,∵转速为10°/秒,∴旋转时间为24秒,如图1﹣7,当AC∥BD时,∵AC∥BD,∴∠DBP=∠BAC=90°,∴点A在MN上,∴三角板PAC绕点P逆时针旋转的角度为180°,∵转速为10°/秒,∴旋转时间为18秒,当AC//BP时,如图1-3,1-4,旋转时间分别为:9s,27s. 综上所述:当t为3s或6s或9s或18s或21s或24s或27s时,这两个三角形是“孪生三角形”;(2)如图,当PD在MN上方时,①正确,理由如下:设运动时间为t秒,则∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,∴∠BPN=2∠CPD=180°−2t, ∴∠CPD∠BPN=12. ②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.当PD在MN下方时,如图,①正确,理由如下:设运动时间为t秒,则∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=2t−30°, ∠APN=3t.∴∠CPD=360°−∠CPA−∠APN−∠DPB−∠BPN=360°−60°−3t−30°−(180°−2t) =90°−t ∴∠BPN=2∠CPD=180°−2t, ∴∠CPD∠BPN=12. ②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.综上:①正确,②错误.【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.【变式1-3】(2023上·福建泉州·七年级统考期末)如图1,将三角板ABC与三角板ADE摆放在一起,其中∠ACB=30°,∠DAE=45°,∠BAC=∠D=90°,固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,当点E落在射线AC的反向延长线上时,即停止旋转.(1)如图2,当边AC落在∠DAE内,①∠CAD与∠BAE之间存在怎样的数量关系?试说明理由;②过点A作射线AF,AG,若∠CAF=13∠CAD,∠BAG=14∠EAG,求∠FAG的度数;(2)设△ADE的旋转速度为3°/秒,旋转时间为t,若它的一边与△ABC的某一边平行(不含重合情况),试写出所有符合条件的t的值.【答案】(1)①∠BAE−∠CAD=45°(或∠BAE=∠CAD+45°),理由见解析;②105°(2)5或15或35或45或50【分析】(1)①由角的和差关系可得∠BAE+∠CAE=90°,∠CAD+∠CAE=45°,再把两式相减即可得到结论;②先求解∠FAE=45°−∠DAF=45°−43∠CAD,-∠EAG=∠BAE+∠BAG=43∠BAE,结合∠FAG=∠FAE+∠EAG,=45°−43∠CAD+43∠BAE =45°+43(∠BAE−∠CAD),从而可得答案;(2)分5种情况讨论:如图,当AD∥BC时,如图,当DE∥AB时,如图,当DE∥BC时,如图,当DE∥AC时,如图,当AE∥BC时,再结合平行线的性质可得答案.【详解】(1)解:①∠BAE−∠CAD=45°(或∠BAE=∠CAD+45°);理由如下:∠BAE+∠CAE=90°,∠CAD+∠CAE=45°,两式相减得:∠BAE−∠CAD=45°,② ∵∠CAF=13∠CAD, ∴∠FAE=45°−∠DAF=45°−43∠CAD,∵∠BAG=14∠EAG,∴∠BAG=13∠BAE,∴∠EAG=∠BAE+∠BAG=43∠BAE,∴∠FAG=∠FAE+∠EAG,=45°−43∠CAD+43∠BAE=45°+43(∠BAE−∠CAD)=45°+43×45°=105° ;(2)如图,当AD∥BC时,∴∠DAC=∠ACB=30°,∠EAC=45°−30°=15°,∴t=153=5;如图,当DE∥AB时,∴∠BAC+∠ADE=180°,则∠ADE=90°,此时∠CAE=∠DAE=45°,∴t=453=15;如图,当DE∥BC时,∴∠BMA=∠D=90°,∠AMC=180°−90°=90°,∴∠MAC=90°−30°=60°,∴∠EAC=45°+60°=105°,∴t=1053=35;如图,当DE∥AC时,∴∠ADE=∠BAC=90°,即A,B,D共线,∴∠CAE=90°+45°=135°,∴t=1353=45;如图,当AE∥BC时,∴∠EAB=∠B=60°,∴∠EAC=60°+90°=150°,∴t=1503=50.【点睛】本题考查的是角的和差运算,角的倍分关系,角的旋转定义的理解,平行线的性质,清晰的分类讨论是解本题的关键.【题型2 平行线在折叠中的运用】【例2】(2023下·浙江温州·七年级校联考期中)如图,已知长方形纸片ABCD,点E和点F分别在边AD和BC上,且∠EFC=37°,点H和点G分别是边AD和BC上的动点,现将点A,B,C,D分别沿EF,GH折叠至点N,M,P,K,若MN∥PK,则∠KHD的度数为( )A.37°或143° B.74°或96° C.37°或105° D.74°或106°【答案】D【分析】分两种情况讨论,①当PK在AD上方时,延长MN、KH相交于点Q,根据MN∥PK,推出EN∥KQ,得到∠AEN=∠AHQ,求出∠AEN的度数,再根据∠KHD=∠AHQ即可求解;②当PK在BC下方时,延长MN、HK相交于点O,根据MN∥PK,推出EN∥HO,得到∠AEN=∠AHO,再根据∠AHO+∠KHD=180°即可求解.【详解】解:①当PK在AD上方时,延长MN、KH相交于点Q,如图所示∵MN∥PK∴∠K=∠Q∵∠K=90°∴∠Q=90°∵∠MNE=90°∴∠MNE=∠Q∴EN∥KQ∴∠AEN=∠AHQ∵∠EFC=37°,AD∥BC∴∠AEF=∠EFC=37°∵翻折∴∠AEF=∠NEF=37°∴∠AEN=74°∴∠AHQ=74°∵∠KHD=∠AHQ∴∠KHD=74°②当PK在BC下方时,延长MN、HK相交于点O,如图所示∵MN∥PK∴∠O=∠OKP=90°∵∠MNE=90°∴∠MNE=∠O∴EN∥HO∴∠AEN=∠AHO∵∠EFC=37°,AD∥BC∴∠AEF=∠EFC=37°∵翻折∴∠AEF=∠NEF=37°∴∠AEN=74°∴∠AHO=74°∵∠AHO+∠KHD=180°∴∠KHD=106°故选D.【点睛】本题考查了翻折、平行线的判定和性质、对顶角等知识点,分情况讨论,画出对应图形进行求解是解答本题的关键.【变式2-1】(2023下·福建宁德·七年级统考期末)如图,将一条长方形彩带ABCD进行两次折叠,先沿折痕MN向上折叠,再沿折痕AM向背面折叠,若要使两次折叠后彩带的夹角∠2=26°,则第一次折叠时∠1应等于 °. 【答案】77【分析】如图所示,根据平行的性质可以得出答案.【详解】解:如图: ∵折叠,∴∠1=∠5,∴∠3+2∠5=∠3+2∠1=180°,∴∠1=12180°−∠3,∵彩带两边平行,∴∠3=∠4=∠6,∵折叠,彩带两边平行,∴∠2=∠PEF=∠PMF=∠6,∴∠3=∠2=26°,∴∠1=12180°−∠3=12180°−26°=77°.故答案为:77.【点睛】此题考查了平行线的性质,熟知两直线平行,内错角相等是解题的关键.【变式2-2】(2023下·浙江温州·七年级温州市第十二中学校联考期中)已知M,N分别是长方形纸条ABCD边AB,CD上两点(AM>DN),如图1所示,沿M,N所在直线进行第一次折叠,点A,D的对应点分别为点E,F,EM交CD于点P;如图2所示,继续沿PM进行第二次折叠,点B,C的对应点分别为点G,H,若∠1=∠2,则∠CPM的度数为( ) A.74° B.72° C.70° D.68°【答案】B【分析】由翻折的性质和长方形的性质可得出:∠AMN=∠NMP=∠1=∠2,∠CPM=∠HPM,据此可得∠AMP=2∠1,∠GMP=3∠1,再根据HP∥GM得∠HPM+∠GMP=180°,根据CP∥BM得∠CPM=∠AMP=2∠1,据此可求出∠1=36°,进而可求出∠CPM的度数.【详解】解:由翻折的性质得:∠AMN=∠NMP,∠CPM=∠HPM,∵四边形ABCD为长方形,∴AB∥CD,∴∠AMN=∠1,∴∠NMP=∠1,又∵∠1=∠2,∴∠AMN=∠NMP=∠1=∠2,∴∠AMP=2∠1,∠GMP=3∠1,∵HP∥GM,∴∠HPM+∠GMP=180°,即:∠HPM+3∠1=180°,∵CP∥BM,∴∠CPM=∠AMP=2∠1,∴∠HPM=∠CPM=2∠1,∴2∠1+3∠1=180°,∴∠1=36°,∴∠CPM=2∠1=72°.故选:B.【点睛】此题主要考查了图形的翻折变换和性质,平行线的性质,解答此题的关键是准确识图,利用图形翻折性质及平行线的性质准确的找出相关的角的关系.【变式2-3】(2023下·河南南阳·七年级统考期末)如图,已知四边形纸片ABCD的边AB∥CD,E是边CD上任意一点,△BCE沿BE折叠,点C落在点F的位置. (1)观察发现:如图①所示:∠C=60°,∠FED=45°,则∠ABF=______.(2)拓展探究:如图②,点F落在四边形ABCD的内部,探究∠FED,∠ABF,∠C之间的数量关系,并证明;(3)迁移应用:如图③,点F落在边CD的上方,则(2)中的结论是否成立?若成立,请证明:若不成立,请写出它们的数量关系并证明.【答案】(1)15°(2)∠FED+∠ABF=∠C,证明见解析(3)不成立,数量关系应为:∠ABF−∠FED=∠C,证明见解析【分析】(1)根据已知条件,结合平行线的性质,算出∠ABC,再结合折叠、四边形内角和,算出∠FBC,最后根据∠ABF=∠ABC−∠FBC计算即可;(2)过点F作MN∥CD,交AD于点M,交BC于点N,由平行线的性质可得∠FED=∠EFN,根据平行公理的推论可得MN∥AB,继而得到∠NFB=∠ABF,再结合折叠的性质可得数量关系;(3)过点F作GH∥CD,由平行线的性质可得∠FED=∠HFE,根据平行公理的推论可得GH∥AB,继而得到得∠ABF=∠HFB,再结合折叠的性质可得数量关系.【详解】(1)解:∵AB∥CD,△BCE沿BE折叠,点C落在点F的位置,∠C=60°,∠FED=45°,∴∠ABC=180°−∠C=120°,(两直线平行,同旁内角互补)∠FEC=180°−∠FED=135°,∠F=∠C=60°,∴∠FBC=360°−∠F−∠C−∠FEC=360°−60°−60°−135°=105°,(四边形内角和为360°)∴∠ABF=∠ABC−∠FBC=120°−105°=15°,故答案为:15°(2)解:如下图,过点F作MN∥CD,交AD于点M,交BC于点N 则∠FED=∠EFN,∵AB∥CD,∴MN∥AB,∴∠NFB=∠ABF,∴∠FED+∠ABF=∠EFN+∠NFB=∠EFB,由折叠的性质得,∠EFB=∠C∴∠FED+∠ABF=∠C(3)解:如下图,过点F作GH∥CD,则∠FED=∠HFE, ∵AB∥CD,∴GH∥AB,∴∠ABF=∠HFB=∠HFE+∠BFE=∠FED+∠BFE,由折叠的性质得,∠BFE=∠C∴∠ABF=∠FED+∠C,即∠ABF−∠FED=∠C【点睛】本题考查了折叠的性质、平行线的性质、平行公理的推论.掌握折叠的性质和平行线的性质是解题的关键.【题型3 旋转使平行】【例3】(2023下·江苏苏州·七年级统考期末)在一次课外活动中,小明将一副直角三角板如图放置,E在AC上, ,,.小明将ADE从图中位置开始,绕点按每秒的速度顺时针旋转一周,在旋转过程中,第 秒时,边与边平行.【答案】或【分析】分两种情况:①DE在AB上方;②DE在AB下方,画出相应的图形,利用平行线的性质即可求得答案.【详解】①当DE在AB上方,∵,∠B=60°,∠D=45°,∴∠BAC=30°,∠E=45°,∵AB∥DE,∴∠BAE=∠E=45°,∴∠CAE=∠BAC+∠BAE=75°,∴旋转时间为:(秒);②当DE在AB下方,∵,∠B=60°,∠D=45°,∴∠BAC=30°,∠E=45°,∵AB∥DE,∴∠BAE+∠E=180°,∴∠BAE=180°-∠E=135°,∴∠CAE=∠BAE-∠BAC=105°,∴旋转角度为:360°-∠CAE=255°,∴旋转时间为:(秒),综上所述:在旋转过程中,第或秒时,边与边平行,故答案为:或.【点睛】本题考查了平行线的判定和性质,解题的关键是对DE的位置进行讨论,画出相应图形解答.【变式3-1】(2023下·河北唐山·七年级统考期末)如图,分别将木条a,b与固定的木条c钉在一起,,,顺时针转动木条a,下列选项能使木条a与b平行的是( ) A.旋转30° B.旋转50° C.旋转80° D.旋转130°【答案】A【分析】根据平行线的 判定定理即可求解.【详解】解:在图中标注出,如图所示: 若,则故应将木条a顺时针转动30°故选:A【点睛】本题考查平行线的判定定理.根据题意选择合适的判定定理是解题的关键.【变式3-2】(2023下·安徽六安·七年级统考期末)两块不同的三角板按如图1所示摆放,边与边重合,,接着如图2保持三角板不动,将三角板绕着点(点不动)按顺时针(如图标示方向)旋转,在旋转的过程中,逐渐增大,当第一次等于时,停止旋转,在此旋转过程中, 时,三角板有一条边与三角板的一条边恰好平行. 【答案】或【分析】分和两种情况求解.【详解】当时,∵,∴,∵,;当时,∵,;故答案为:或.【点睛】本题考查了平行线的性质,三角板中的计算,熟练掌握平行线的性质是解题的关键.【变式3-3】(2023下·河北唐山·七年级统考期中)如图(1),在三角形ABC中,,BC边绕点C按逆时针方向旋转一周回到原来的位置.在旋转的过程中(图(2),使,则( )A. B. C.或 D.或【答案】C【分析】结合旋转的过程可知,因为位置的改变,与∠ A可能构成内错角,也有可能构成同旁内角,所以需分两种情况加以计算即可.【详解】解:如图(2),当时,∵,∴.∴.如图(2),当时,∵,∴∴.综上可得,当或时,.故选:C.【点睛】本题考查了平行线的判定、分类讨论的数学思想等知识点,根据在旋转过程中的不同位置,进行分类讨论是解题的关键.【题型4 利用平行线求角度之间的关系】【例4】(2023下·广东广州·七年级统考期末)点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD.(1)如图1,若点E在线段AC上,求证:∠B+∠D=∠BED;(2)若点E不在线段AC上,试猜想并证明∠B,∠D,∠BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB//ED,在直线BP,ED之间有点M,使得∠ABE=∠EBM,∠CDE=∠EDM,同时点F使得∠ABE=n∠EBF,∠CDE=n∠EDF,其中n≥1,设∠BMD=m,利用(1)中的结论求∠BFD的度数(用含m,n的代数式表示).【答案】(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)mn−12n【分析】(1)如图1中,过点E作ET∥AB.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥AB.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m=2x+2y,∴x+y=12m,∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,∴∠BFD=n−1nx+n−1ny=n−1nx+y=n−1n×12m=mn−12n.【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型.【变式4-1】(2023下·广东广州·七年级统考期末)甲同学在学完《相交线与平行线》后,想通过折铁丝的方式进一步探索相交线与平行线的知识,他的具体操作步骤如下:第一步:将一根铁丝AB在C,D,E处弯折得到如下图①的形状,其中AC∥DE,CD∥BE.第二步:将DE绕点D旋转一定角度,再将BE绕点E旋转一定角度并在BE上某点F处弯折,得到如下图②的形状.第三步:再拿出另外一根铁丝弯折成∠G,跟前面弯折的铁丝叠放成如下图③的形状.请根据上面的操作步骤,解答下列问题:(1)如图①,若∠C=2∠D,求∠E;(2)如图②,若AC∥BF,请判断∠C,∠D,∠E,∠F之间的数量关系,并说明理由;(3)在(2)的条件下,如图③,若∠ACD=3∠DCG,∠DEF=3∠DEG,设∠D=x,∠F=y,求∠G.(用含x,y的式子表示)【答案】(1)∠E=60°(2)∠C+∠CDE=∠DEF+∠F,理由见解析(3)∠G=23x+13y【分析】(1)根据平行线的性质得出∠C+∠D=180°,根据解题得出∠D=60°,进而根据CD∥BE,即可求解;(2)过点D,E分别作AC的平行线DN,EM,根据平行线的性质得出∠MED=∠NDE设∠MED=∠NDE=α,进而根据平行线的性质得出∠C+∠CDE+α=180°,∠DEF+α+∠F=180°,即可得出结论;(3)根据(2)的结论可得∠ACD+x=∠DEF+y,∠G+∠ACG=∠F+∠GEF,根据已知∠ACD=3∠DCG,∠DEF=3∠DEG,可得∠G+23∠ACD=23∠DEF+y,进而即可求解.【详解】(1)解:∵AC∥DE, ∴∠C+∠D=180°,∵∠C=2∠D,∴3∠D=180解得:∠D=60°,∵CD∥BE.∴∠E=∠D=60°;(2)解:如图所示,过点D,E分别作AC的平行线DN,EM,∴EM∥DN,∴∠MED=∠NDE,设∠MED=∠NDE=α,又∵AC∥BF,∴AC∥DN,ME∥BF,∴∠C+∠CDE+α=180°,∠DEF+α+∠F=180°,∴∠C+∠CDE=∠DEF+∠F,;(3)∵∠D=x,∠F=y,∠C+∠CDE=∠DEF+∠F,
相关资料
更多