2024年山东省枣庄市初中学业水平考试数学模拟试题 (含解析)
展开注意事项:
1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.
2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案,填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号.考试结束,将试题和答题卡一并交回.
第Ⅰ卷(选择题 共30分)
一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.
1.的相反数是( )
A.B.C.D.
2.第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101 527 000用科学记数法(精确到十万位)( )
A.1.02×108B.0.102×109C.1.015×108D.0.1015×109
3.如图,某机器零件的三视图中,既是轴对称图形,又是中心对称图形的是( )
A.主视图B.左视图C.俯视图D.不存在
4.实数,在数轴上对应点的位置如图所示,则下列结论正确的是( )
A.B.
C.D.
5.下列运算正确的是( )
A.B.
C.D.
6.若一个菱形的两条对角线长分别是关于的一元二次方程的两个实数根,且其面积为11,则该菱形的边长为( )
A.B.C.D.
7.如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数和的图象交于P、Q两点.若S△POQ=15,则k的值为( )
A.38B.22C.﹣7D.﹣22
8.如图,圆内接四边形中,,连接,,,,.则的度数是( )
A.B.C.D.
9.如图,在矩形中,,,点E、F分别为、的中点,、相交于点G,过点E作,交于点H,则线段的长度是( )
A.B.1C.D.
10.如图,拋物线(为常数)关于直线对称.下列五个结论:①;②;③;④;⑤.其中正确的有( )
A.4个B.3个C.2个D.1个
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共6小题,满分18分,请将答案填在答题卡的相应位置.
11.函数中,自变量x的取值范围是 .
12.若是关x的方程的解,则的值为 .
13.关于x的方程的解为非负数,则m的取值范围是 .
14.如图,中,为对角线,分别以点A、B为圆心,以大于的长为半径画弧,两弧相交于点M、N,作直线交于点E,交于点F,若,,,则的长为 .
15.如图,在中,,,.以点为圆心,长为半径画弧,分别交,于点,,则图中阴影部分的面积为 (结果保留).
16.在平面直角坐标系中,点在轴的正半轴上,点在直线上,若点的坐标为,且均为等边三角形.则点的纵坐标为 .
三、解答题:本大题共8小题,满分72分.解答时,要写出必要的文字说明、证明过程或演算步骤.
17.先化简,再从不等式中选择一个适当的整数,代入求值.
18.对于任意实数a,b,定义一种新运算:,例如:,.根据上面的材料,请完成下列问题:
(1)___________,___________;
(2)若,求x的值.
19.超速容易造成交通事故.高速公路管理部门在某隧道内的两处安装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且在同一直线上.点、点到的距离分别为,且,在处测得点的俯角为,在处测得点的俯角为,小型汽车从点行驶到点所用时间为.
(1)求两点之间的距离(结果精确到);
(2)若该隧道限速80千米/小时,判断小型汽车从点行驶到点是否超速?并通过计算说明理由.(参考数据:)
20.在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.
(1)该班共有学生_________人,并把条形统计图补充完整;
(2)扇形统计图中,___________,___________,参加剪纸社团对应的扇形圆心角为_______度;
(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.
21.如图,AB是⊙O的直径,点F在⊙O上,的平分线AE交⊙O于点E,过点E作,交AF的延长线于点D,延长DE,AB相交于点C.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为5,,求BC的长.
22.如图,在中,D是的中点,E是的中点,过点A作交的延长线于点F.
(1)求证:;
(2)连接,若,求证:四边形是矩形.
23.在平面直角坐标系中,已知抛物线过点,对称轴是直线.
(1)求此抛物线的函数表达式及顶点M的坐标;
(2)若点B在抛物线上,过点B作x轴的平行线交抛物线于点C、当是等边三角形时,求出此三角形的边长;
(3)已知点E在抛物线的对称轴上,点D的坐标为,是否存在点F,使以点A,D,E,F为顶点的四边形为菱形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
24.综合与实践
如图1,某兴趣小组计划开垦一个面积为的矩形地块种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为.
【问题提出】
小组同学提出这样一个问题:若,能否围出矩形地块?
【问题探究】
小颖尝试从“函数图象”的角度解决这个问题:
设为,为.由矩形地块面积为,得到,满足条件的可看成是反比例函数的图象在第一象限内点的坐标;木栏总长为,得到,满足条件的可看成一次函数的图象在第一象限内点的坐标,同时满足这两个条件的就可以看成两个函数图象交点的坐标.
如图2,反比例函数的图象与直线:的交点坐标为和_________,因此,木栏总长为时,能围出矩形地块,分别为:,;或___________m,__________m.
(1)根据小颖的分析思路,完成上面的填空.
【类比探究】
(2)若,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由.
【问题延伸】
当木栏总长为时,小颖建立了一次函数.发现直线可以看成是直线通过平移得到的,在平移过程中,当过点时,直线与反比例函数的图象有唯一交点.
(3)请在图2中画出直线过点时的图象,并求出的值.
【拓展应用】
小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“与图象在第一象限内交点的存在问题”.
(4)若要围出满足条件的矩形地块,且和的长均不小于,请直接写出的取值范围.
1.B
【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
【详解】解:的相反数是,
故选:B.
【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.
2.C
【分析】先用四舍五入法精确到十万位,再按科学记数法的形式和要求改写即可.
【详解】解:
故选:C
【点睛】本题考查了近似数和科学记数法的知识点,取近似数是本题的基础,熟知科学记数法的形式和要求是解题的关键.
3.C
【分析】根据该几何体的三视图,结合轴对称图形的定义:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形及中心对称的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形称为中心对称图形进行判断即可.
【详解】
解:该几何体的三视图如下:
三视图中既是轴对称图形,又是中心对称图形的是俯视图,
故选:C.
【点睛】本题考查简单几何体的三视图,中心对称、轴对称,理解视图的意义,掌握简单几何体三视图的画法以及轴对称、中心对称的意义是正确判断的前提.
4.D
【分析】根据题意可得,然后根据数的乘法和加法法则以及不等式的性质进行判断即可.
【详解】解:由题意可得:,所以,
∴,
观察四个选项可知:只有选项D的结论是正确的;
故选:D.
【点睛】本题考查了实数与数轴以及不等式的性质,正确理解题意、得出是解题的关键.
5.B
【分析】本题主要考查了合并同类项的法则,同底数幂的除法法则,幂的乘方与积的乘方的法则和完全平方公式,熟练掌握上述法则与公式是解题的关键.利用合并同类项的法则,同底数幂的除法法则,幂的乘方与积的乘方的法则和完全平方公式对每个选项进行逐一判断即可得出结论.
【详解】解:A、,
此选项不符合题意;
B、,
此选项符合题意;
C、,
此选项不符合题意;
D、,
此选项不符合题意.
故选:B.
6.C
【分析】根据一元二次方程根与系数的关系,得到,根据菱形的面积得到,利用勾股定理以及完全平方公式计算可得答案.
【详解】解:设方程的两根分别为a,b,
∴,
∵a,b分别是一个菱形的两条对角线长,已知菱形的面积为11,
∴,即,
∵菱形对角线垂直且互相平分,
∴该菱形的边长为
,故C正确.
故选:C.
【点睛】本题考查了根与系数的关系以及菱形的性质,完全平方公式,利用根与系数的关系得出是解题的关键.
7.D
【分析】设点P(a,b),Q(a,),则OM=a,PM=b,MQ=,则PQ=PM+MQ=,再根据ab=8,S△POQ=15,列出式子求解即可.
【详解】解:设点P(a,b),Q(a,),则OM=a,PM=b,MQ=,
∴PQ=PM+MQ=.
∵点P在反比例函数y=的图象上,
∴ab=8.
∵S△POQ=15,
∴PQ•OM=15,
∴a(b﹣)=15.
∴ab﹣k=30.
∴8﹣k=30,
解得:k=﹣22.
故选:D.
【点睛】本题主要考查了反比例函数与几何综合,熟练掌握反比例函数的相关知识是解题的关键.
8.A
【分析】根据圆内接四边形对角互补得出,根据圆周角定理得出,根据已知条件得出,进而根据圆周角定理即可求解.
【详解】解:∵圆内接四边形中,,
∴
∴
∵
∴,
∵
∴,
故选:A.
【点睛】本题考查了圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键.
9.A
【分析】根据矩形的性质得出,求出,,求出,根据勾股定理求出,求出,根据三角形的中位线求出,根据相似三角形的判定得出,根据相似三角形的性质得出,再求出答案即可.
【详解】解析:四边形是矩形,,,
,,,
点E、F分别为、的中点,
,,
,
,
,
.
由勾股定理得:,
,
,
,
,
,
解得:,
故选:A.
【点睛】本题考查了矩形的性质和相似三角形的性质和判定,能熟记矩形的性质是解此题的关键.
10.B
【分析】由抛物线的开口方向、与y轴交点以及对称轴的位置可判断a、b、c的符号,由此可判断①正确;由抛物线的对称轴为,得到,即可判断②;可知时和时的y值相等可判断③正确;由图知时二次函数有最小值,可判断④错误;由抛物线的对称轴为可得,因此,根据图像可判断⑤正确.
【详解】①∵抛物线的开口向上,
∵抛物线与y轴交点在y轴的负半轴上,
由得,,
,
故①正确;
②抛物线的对称轴为,
,
,
,故②正确;
③由抛物线的对称轴为,可知时和时的y值相等.
由图知时,,
∴时,.
即.
故③错误;
④由图知时二次函数有最小值,
,
,
,
故④错误;
⑤由抛物线的对称轴为可得,
,
∴,
当时,.
由图知时
故⑤正确.
综上所述:正确的是①②⑤,有3个,
故选:B.
【点睛】本题主要考查了二次函数的图像与系数的关系,二次函数的对称轴及顶点位置.熟练掌握二次函数图像的性质及数形结合是解题的关键.
11.x≥-2且x≠1
【分析】根据二次根式有意义的条件和分式有意义的条件即可求出结论.
【详解】解:由题意可得
解得x≥-2且x≠1
故答案为:x≥-2且x≠1.
【点睛】此题考查的是求自变量的取值范围,掌握二次根式有意义的条件和分式有意义的条件是解决此题的关键.
12.2019
【分析】将代入方程,得到,利用整体思想代入求值即可.
【详解】解:∵是关x的方程的解,
∴,即:,
∴
;
故答案为:2019.
【点睛】本题考查方程的解,代数式求值.熟练掌握方程的解是使等式成立的未知数的值,是解题的关键.
13.且
【分析】解分式方程,可用表示,再根据题意得到关于的一元一次不等式即可解答.
【详解】解:解,可得,
的方程的解为非负数,
,
解得,
,
,
即,
的取值范围是且,
故答案为:且.
【点睛】本题考查了根据分式方程的解的情况求值,注意分式方程无解的情况是解题的关键.
14.5
【分析】连接,根据基本作图,得到,利用平行四边形的性质,得,在中,利用勾股定理计算即可.
【详解】解:如图所示,连接,
根据基本作图,可设,
∵,,,
∴,,,
在中,,由勾股定理得,
∴,
解得,
即,
故答案为:5.
【点睛】本题考查了平行四边形的性质,线段垂直平分线的基本作图,勾股定理,熟练掌握平行四边形的性质,勾股定理是解题的关键.
15.
【分析】本题考查了扇形面积的计算,直角三角形的边角关系,等边三角形的判定和性质,灵活运用相关知识是解题的关键.根据直角三角形的边角关系以及等边三角形的判定和性质可求出圆心角的度数和半径,再根据“阴影部分的面积”进行计算即可.
【详解】解:连接,
,
,
,
为等边三角形,
,,
,
,
阴影部分的面积为.
故答案为:.
16.
【分析】过点作轴,交直线于点,过点作轴于点,先求出,再根据等边三角形的性质、等腰三角形的判定可得,然后解直角三角形可得的长,即可得点的纵坐标,同样的方法分别求出点的纵坐标,最后归纳类推出一般规律,由此即可得.
【详解】解:如图,过点作轴,交直线于点,过点作轴于点,
,
,
当时,,即,
,
,
是等边三角形,
,
,
,
,即点的纵坐标为,
同理可得:点的纵坐标为,
点的纵坐标为,
点的纵坐标为,
归纳类推得:点的纵坐标为(为正整数),
则点的纵坐标为,
故答案为:.
【点睛】本题考查了点坐标的规律探索、等边三角形的性质、正比例函数的应用、解直角三角形等知识点,正确归纳类推出一般规律是解题关键.
17.,选择,式子的值为(或选择,式子的值为1)
【分析】先计算括号内的分式减法,再计算分式的除法,然后根据分式有意义的条件选择适当的的值,代入计算即可得.
【详解】解:原式
,
,,
,,
,且为整数,
选择代入得:原式,
选择代入得:原式.
【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.
18.(1)1;2;
(2),
【分析】(1)原式利用题中的新定义计算即可求出值;
(2)已知等式利用已知的新定义进行分类讨论并列出方程,再计算求出x的值即可.
【详解】(1),
,
;
故答案为:1;2;
(2)若时,即时,则
,
解得:,
若时,即时,则
,
解得:,不合题意,舍去,
,
【点睛】此题考查了实数的新定义运算及解一元一次方程,弄清题中的新定义是解本题的关键.
19.(1)
(2)小型汽车从点行驶到点没有超速.
【分析】(1)证明四边形为矩形,可得,结合,,,可得,,再利用线段的和差关系可得答案;
(2)先计算小型汽车的速度,再统一单位后进行比较即可.
【详解】(1)解:∵点、点到的距离分别为,
∴,,而,
∴,
∴四边形为矩形,
∴,
由题意可得:,,,
∴,,
∴
(2)∵小型汽车从点行驶到点所用时间为.
∴汽车速度为,
∵该隧道限速80千米/小时,
∴,
∵,
∴小型汽车从点行驶到点没有超速.
【点睛】本题考查的是解直角三角形的应用,理解俯角的含义,熟练的运用锐角三角函数解题是关键.
20.(1),详见图示;
(2),,;
(3);
【分析】(1)利用C类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D的人数,然后补图即可;
(2)根据总数与各项人数比值可求出m,n的值,A项目的人数与总人数比值乘即可得出圆心角的度数;
(3)画树状图展示所有20种等可能的结果数,再找出恰好选中小鹏和小兵的结果数,然后利用概率公式求解.
【详解】(1)本次调查的学生总数:(人),
D、书法社团的人数为:(人),如图所示
故答案为:50;
(2)由图知,,
∴,参加剪纸的圆心角度数为
故答案为:20,10,
(3)用表示社团的五个人,其中A,B分别代表小鹏和小兵树状图如下:
共20种等可能情况,有2种情恰好是小鹏和小兵参加比赛,
故恰好选中小鹏和小兵的概率为.
【点睛】本题考查条形统计图和扇形统计图的综合运用,列表法与画树状图法求概率,解题的关键是掌握列表法与画树状图法求概率的方法:先利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
21.(1)见解析;
(2);
【分析】(1)根据切线的判定定理证明即可;
(2)证明,利用得到:,再根据勾股定理求出,,证明利用相似的性质可求出BC.
【详解】(1)证明:如图,连接OE,
∵,
∴,
∵AE平分,
∴,
∴,
∴,
∵,
∴,
∴CD是⊙O的切线.
(2)解:如图,连接BE.
∵AB为⊙O直径,
∴,
∵,
∴,
∴,
又∵
∴,则.
又∵,
在中,,即:,
解得,则,
∴,
解得,,
∵,为公共角,
∴,
∴,
设,
∴,解得,
经检验,是原方程的解,且符合题意.
∴BC的长为.
【点睛】本题考查切线的判定定理,角平分线的性质,相似三角形的判定和性质,勾股定理.(1)的关键是掌握切线的判定方法;(2)的关键是利用相似三角形的判定和性质及正切值证明.
22.(1)见解析;
(2)见解析;
【分析】(1)根据两直线平行,内错角相等求出,然后利用“角角边”证明三角形全等,再由全等三角形的性质容易得出结论;
(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形是平行四边形,再根据一个角是直角的平行四边形是矩形判定即可.
【详解】(1)证明:∵,
∴,
∵点E为的中点,
∴,
在和中,
,
∴;
∴,
∵,
∴;
(2)证明:,
∴四边形是平行四边形,
∵,
∴,
∴平行四边形是矩形.
【点睛】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.
23.(1),
(2)
(3)存在点F,当或或或时,以点A,D,E,F为顶点的四边形为菱形.
【分析】(1)根据对称轴和过点列二元一次方程组求解即可;
(2)如图:过点M作交于D,设点,则;然后表示出,再根据是等边三角形可得,,根据三角函数解直角三角形可得,进而求得即可解答;
(3)如图可知:线段为菱形的边和对角线,然后通过作图、结合菱形的性质和中点坐标公式即可解答.
【详解】(1)解:由题意可得:
,解得:,
所以抛物线的函数表达式为;
当时,,则顶点M的坐标为.
(2)解:如图:过点M作交于D
设点,则,
∴,
∵是等边三角形,
∴,
∴,即,解得:或(舍去)
∴,,
∴该三角形的边长.
(3)解:存在点F,使以点A,D,E,F为顶点的四边形为菱形
①如图:线段作为菱形的边,
当为菱形的对角线时,作关于直线的对称线段交于E,连接,作点E关于的对称点F,即为菱形,由对称性可得F的坐标为,故存在点F,使以点A,D,E,F为顶点的四边形为菱形,此时.
当为菱形对角线时,,
设,,
则,解得:或,
∴或
②线段作为菱形的对角线时,
如图:设
∵菱形,
∴,的中点G的坐标为,点G是的中点,
∴,解得,
∴,
设,
则有:,解得:,
∴.
综上,当或或或时,以点A,D,E,F为顶点的四边形为菱形.
【点睛】本题主要考查了求二次函数解析式、二次函数与几何的综合、等边三角形的性质、解直角三角形、菱形的判定等知识点,掌握数形结合思想是解答本题的关键.
24.(1);4;2;(2)不能围出,理由见解析;(3)图见解析,;(4)
【分析】(1)联立反比例函数和一次函数表达式,求出交点坐标,即可解答;
(2)根据得出,,在图中画出的图象,观察是否与反比例函数图像有交点,若有交点,则能围成,否则,不能围成;
(3)过点作的平行线,即可作出直线的图象,将点代入,即可求出a的值;
(4)根据存在交点,得出方程有实数根,根据根的判别式得出,再得出反比例函数图象经过点,,则当与图象在点左边,点右边存在交点时,满足题意;根据图象,即可写出取值范围.
【详解】解:(1)∵反比例函数,直线:,
∴联立得:,
解得:,,
∴反比例函与直线:的交点坐标为和,
当木栏总长为时,能围出矩形地块,分别为:,;或,.
故答案为:4;2.
(2)不能围出.
∵木栏总长为,
∴,则,
画出直线的图象,如图中所示:
∵与函数图象没有交点,
∴不能围出面积为的矩形;
(3)如图中直线所示,即为图象,
将点代入,得:,
解得;
(4)根据题意可得∶ 若要围出满足条件的矩形地块, 与图象在第一象限内交点的存在问题,
即方程有实数根,
整理得:,
∴,
解得:,
把代入得:,
∴反比例函数图象经过点,
把代入得:,解得:,
∴反比例函数图象经过点,
令,,过点,分别作直线的平行线,
由图可知,当与图象在点A右边,点B左边存在交点时,满足题意;
把代入得:,
解得:,
∴.
【点睛】本题主要考查了反比例函数和一次函数综合,解题的关键是正确理解题意,根据题意得出等量关系,掌握待定系数法,会根据函数图形获取数据.
2024年山东省潍坊市初中学业水平考试二模数学模拟试题(含解析): 这是一份2024年山东省潍坊市初中学业水平考试二模数学模拟试题(含解析),共28页。试卷主要包含了在同一平面直角坐标系中,函数和,下列因式分解正确的是,规定等内容,欢迎下载使用。
2024年山东省枣庄市初中学业水平考试数学模拟试卷(二): 这是一份2024年山东省枣庄市初中学业水平考试数学模拟试卷(二),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省枣庄市初中学业水平考试数学模拟题(三): 这是一份2024年山东省枣庄市初中学业水平考试数学模拟题(三),共6页。试卷主要包含了5 B,已知a₁ 为实数,规定运算等内容,欢迎下载使用。