河南省信阳市新县高级中学2024届高三考前第三次适应性考试数学试题(原卷版+解析版)
展开
这是一份河南省信阳市新县高级中学2024届高三考前第三次适应性考试数学试题(原卷版+解析版),文件包含河南省信阳市新县高级中学2024届高三考前第三次适应性考试数学试题原卷版docx、河南省信阳市新县高级中学2024届高三考前第三次适应性考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
数学
注意事项:
1.答卷前,考生务必将自己的考生号、姓名、考点学校、考场号及座位号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并收回.
一、单项选择题:本题共8小题,每小题5分,共40分,在每小题的四个选项中,只有一项符合题目要求.
1. 若,,则实数( )
A. 6B. C. 3D.
【答案】B
【解析】
【分析】利用向量数量积坐标公式即可求解.
【详解】因为,所以 ,
即 ,所以,
因为,,所以,
所以,解得.
故选:B
2. “函数的图象关于对称”是“,”的( )
A. 充分不必要条件B. 必要不充分条件
C. 充要条件D. 既不充分也不必要条件
【答案】B
【解析】
【分析】利用正切函数的性质结合集合间的基本关系判定充分、必要条件即可.
【详解】当函数的图象关于对称时,
有,,得,,
易知,
所以“函数的图象关于对称”是“,”的必要不充分条件.
故选:B.
3. 我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)( )
A. 6寸B. 4寸C. 3寸D. 2寸
【答案】C
【解析】
【分析】由题意得到盆中水面的半径,利用圆台的体积公式求出水的体积,用水的体积除以盆的上底面面积即可得到答案.
【详解】
如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸,
因为积水深9寸,所以水面半径为寸,
则盆中水的体积为立方寸,
所以平地降雨量等于寸.
故选:C.
4. 某小组两名男生和两名女生邀请一名老师排成一排合影留念,要求两名男生不相邻,两名女生也不相邻,老师不站在两端,则不同的排法共有( )
A. 48种B. 32种C. 24种D. 16种
【答案】B
【解析】
【分析】由排列组合以及分类分步计数原理即可得解.
【详解】当老师从左到右排在第二或第四位时,共有种排法,
当老师从左到右排在第三位时,共有种排法,于是共有种排法.
故选:B.
5. 已知三棱柱满足,,,则异面直线与所成角的余弦值为( )
A. B. C. D.
【答案】C
【解析】
【分析】设,,,表达出,,求出两向量数量积和模长,利用求出答案.
【详解】设,,,
则,,
则,由得,即,
又,由得,
因为,所以,
即,即,
所以,
所以异面直线与所成角的余弦值为.
故选:C
6. 若系列椭圆(,)的离心率,则( )
A. B. C. D.
【答案】A
【解析】
【分析】先化为标准方程,直接求出离心率列方程即可求解.
【详解】椭圆可化为:.
因为,所以离心率,解得:.
故选:A
7. 已知,则( )
A. B. C. D.
【答案】B
【解析】
【分析】先将已知等式化简得到,再利用角的关系求解即可.
【详解】,因为所以,所以
故选:B
8. 双曲线的左,右焦点分别为,过作垂直于轴的直线交双曲线于两点,的内切圆圆心分别为,则的面积是( )
A. B. C. D.
【答案】A
【解析】
【分析】由题意画出图,由已知求出值,找出的坐标,由的内切圆圆心分别为,进行分析,由等面积法求出内切圆的半径,从而求出的底和高,利用三角形的面积公式计算即可.
【详解】由题意如图所示:
由双曲线,知,
所以,
所以,
所以过作垂直于轴的直线为,
代入中,解出,
由题知的内切圆的半径相等,
且,的内切圆圆心
的连线垂直于轴于点,
设为,在中,由等面积法得:
由双曲线的定义可知:
由,所以,
所以,
解得:,
因为为的的角平分线,
所以一定在上,即轴上,令圆半径为,
在中,由等面积法得:
,
又
所以,
所以,
所以,
,
所以
,
故选:A.
二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对得部分分,有选错的得0分.
9. 关于函数有下述四个结论,其中结论错误的是( )
A. 是偶函数B. 在区间单调递增
C. 在有4个零点D. 最大值为2
【答案】BC
【解析】
【分析】利用正弦函数的图象性质结合函数的奇偶性、单调性最值、零点的概念一一求解.
【详解】因为的定义域为,
又,为偶函数,故A正确.
当时,,它在区间单调递减,故B错误.
当时,,它有两个零点:;
当时,,
它有一个零点:,故在有个零点:,故C错误.
当时,;
当时,,
又为偶函数,的最大值为,故D正确.
故选:BC.
10. 双曲线:,左、右顶点分别为,,为坐标原点,如图,已知动直线与双曲线左、右两支分别交于,两点,与其两条渐近线分别交于,两点,则下列命题正确的是( )
A. 存在直线,使得
B. 在运动的过程中,始终有
C. 若直线的方程为,存在,使得取到最大值
D. 若直线的方程为,,则双曲线的离心率为
【答案】BD
【解析】
【分析】根据与渐近线平行的直线不可能与双曲线有两个交点可对A项判断;设直线:分别与双曲线联立,渐近线联立,分别求出和
坐标,从而可对B、C项判断;根据,求出,从而可对D项判断.
【详解】对于A项:与渐近线平行的直线不可能与双曲线有两个交点,故A项错误;
对于B项:设直线:,与双曲线联立,得:,
设,,由根与系数关系得:,,
所以线段中点,
将直线:,与渐近线联立得点坐标为,
将直线:与渐近线联立得点坐标为
所以线段中点,
所以线段与线段的中点重合,所以,故B项正确;
对于C项:由B项可得,,因为为定值,
当越来越接近渐近线的斜率时,趋向于无穷,
所以会趋向于无穷,不可能有最大值,故C项错误;
对于D项:联立直线与渐近线,解得,
联立直线与渐近线,解得由题可知,,
所以即
,解得,所以,故D项正确.
故选:BD.
11. 如图所示,有一个棱长为4的正四面体容器,是的中点,是上的动点,则下列说法正确的是( )
A. 直线与所成的角为
B. 的周长最小值为
C. 如果在这个容器中放入1个小球(全部进入),则小球半径的最大值为
D. 如果在这个容器中放入4个完全相同的小球(全部进入),则小球半径的最大值为
【答案】ACD
【解析】
【分析】A选项,作出辅助线,由三线合一得到线线垂直,进而得到线面垂直,进而得到线线垂直,求出答案;B选项,把沿着展开与平面同一平面内,由余弦定理求出的最小值,得到周长的最小值;C选项,求出正四面体的内切球即为小球半径的最大值;D选项,当四个小球相切且与大正四面体相切时,小球半径最大,连接四个小球的球心,构成正四面体,设出半径,结合C选项中结论得到方程,求出小球半径的最大值.
【详解】A选项,连接,由于为的中点,
所以⊥,⊥,
又,平面,
所以直线⊥平面,又平面,
所以⊥,故A正确;
B选项,把沿着展开与平面同一个平面内,连接交于点,
则的最小值即为的长,
由于,,
,
,
所以,
故,的周长最小值为,B错误;
C选项,要使小球半径最大,则小球与四个面相切,是正四面体的内切球,
设球心为,取的中点,连接,过点作垂直于于点,
则为的中心,点在上,过点作⊥于点,
因为,所以,同理,
则,
故,
设,故,
因为∽,所以,即,
解得,C正确;
D选项,4个小球分两层(1个,3个)放进去,要使小球半径要最大,则4个小球外切,且小球与三个平面相切,
设小球半径为,四个小球球心连线是棱长为的正四面体,
由C选项可知,其高为,
由C选项可知,是正四面体的高,过点且与平面交于,与平面交于,
则,,
由C选项可知,正四面体内切球的半径是高的得,如图正四面体中,,,
正四面体高为,解得,D正确.
故选:ACD
【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径
三、填空题:本题共3小题,每小题5分,共15分.
12. 小于300的所有末尾是1的三位数的和等于______.
【答案】3920
【解析】
【分析】根据小于300的所有末尾是1的三位数是以101为首项,以10为公差的等差数列求解.
【详解】解:小于300的所有末尾是1的三位数是101,111,121,…,291,
是以101为首项,以10为公差的等差数列,
所以小于300的所有末尾是1的三位数的和为,
故答案为:3920
13. 已知函数,若恒成立,则__________.
【答案】1
【解析】
【分析】对求导,分和两种情况,判断的单调性,求出的最小值,再结合恒成立求出的取值范围.
【详解】由题可得的定义域为,且,
①当时,,所以在上单调递增,所以当时,,与矛盾;
②当时,当时,单调递减,当时,单调递增,所以,
因为恒成立,所以,记当时,单调递增,
当时单调递减,所以,所以在上恒成立,
故要使恒成立,则,所以.
故答案为:1
14. 已知X为包含v个元素的集合(,).设A为由X的一些三元子集(含有三个元素的子集)组成的集合,使得X中的任意两个不同的元素,都恰好同时包含在唯一的一个三元子集中,则称组成一个v阶的Steiner三元系.若为一个7阶的Steiner三元系,则集合A中元素的个数为_____________.
【答案】7
【解析】
【分析】令,列举出所有三元子集,结合组成v阶的Steiner三元系定义,确定中元素个数.
【详解】由题设,令集合,共有7个元素,
所以的三元子集,如下共有35个:
、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、,
因为中集合满足X中的任意两个不同的元素,都恰好同时包含在唯一的一个三元子集,所以中元素满足要求的有:
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
、、、、、、,共有7个;
共有15种满足要求的集合A,但都只有7个元素.
故答案为:7
四、解答题:本题共5题,共77分.解答应写出文字说明、证明过程或演算步骤.
15. 如图,在△ABC中,,D为△ABC外一点,,记,.
(1)求值;
(2)若的面积为,的面积为,求的最大值.
【答案】(1)
(2)
【解析】
【分析】(1)利用余弦定理,进行转换即可;
(2)根据题意,由(1)知,求出取得最大值,最大值为.
【小问1详解】
在中,由余弦定理,得,
在中,由余弦定理,得,
所以,
所以,
即.
小问2详解】
由题意知,,
所以
,
由(1)知,
所以,,
所以
,
所以当时,取得最大值,最大值为.
16. ,,,四人进行羽毛球单打循环练习赛,其中每局有两人比赛,每局比赛结束时,负的一方下场,第1局由,对赛,接下来按照,的顺序上场第2局、第3局(来替换负的那个人),每次负的人其上场顺序排到另外2个等待上场的人之后(即排到最后一个),需要再等2局(即下场后的第3局)才能参加下一场练习赛.设各局中双方获胜的概率均为,各局比赛的结果相互独立.
(1)求前4局都不下场的概率;
(2)用表示前局中获胜的次数,求的分布列和数学期望.
【答案】(1)
(2)分布列见解析,
【解析】
【分析】(1)根据前4局A都不下场,由前4局A都获胜求解;
(2)由的所有可能取值为0,1,2,3,4,分别求得其概率,列出分布列,再求期望.
【小问1详解】
前4局都不下场说明前4局都获胜,
故前局都不下场的概率
【小问2详解】
依题意的所有可能取值为0,1,2,3,4,
其中,表示第1局输,第4局是上场,且输,则;
表示第1局输,第4局是上场,且赢或第1局赢,且第2局输,
则;
表示第1局赢,且第2局赢,第3局输,
则;
表示第1局赢,且第2局赢,第3局赢,第4局输,
则;
表示第1局赢,且第2局赢,第3局赢,第4局赢,
则
所以的分布列为
故的数学期望为
17. 如图,圆台的轴截面为等腰梯形,,B为底面圆周上异于A,C的点.
(1)在平面内,过作一条直线与平面平行,并说明理由;
(2)设平面∩平面,与平面QAC所成角为,当四棱锥的体积最大时,求的取值范围.
【答案】(1)作图及理由见解析;
(2).
【解析】
【分析】(1)取中点P,作直线,再利用线面平行的判定推理作答.
(2)延长交于点O,作直线,再确定四棱锥体积最大时,点B的位置,然后建立空间直角坐标系,利用空间向量建立线面角正弦的函数关系,求出其范围作答.
【小问1详解】
取中点P,作直线,则直线即为所求,
取中点H,连接,则有,如图,
在等腰梯形中,,有,则四边形为平行四边形,
即有,又平面,平面,
所以平面.
【小问2详解】
延长交于点O,作直线,则直线即为直线,如图,
过点B作于,因为平面平面,平面平面,平面,
因此平面,即为四棱锥的高,在中,,
,当且仅当时取等号,此时点与重合,
梯形的面积为定值,四棱锥的体积,
于是当最大,即点与重合时四棱锥的体积最大,,
以为原点,射线分别为轴的非负半轴建立空间直角坐标系,
在等腰梯形中,,此梯形的高,
显然为的中位线,则,
,
设,则
设平面的一个法向量,则,令,得,
则有,
令,则,当时,,
当时,,当且仅当,即时取等号,
综上得,
所以的取值范围是.
【点睛】思路点睛:求空间角的最值问题,根据给定条件,选定变量,将该角的某个三角函数建立起选定变量的函数,求出函数最值即可.
18. 已知函数.
(1)当时,探究零点的个数;
(2)当时,证明:.
【答案】(1)答案见解析
(2)证明见解析
【解析】
【分析】(1)首先求得导函数,然后分类讨论确定零点的个数即可;
(2)由题意可知在上有1个零点,结合不等式的特点,构造函数,对函数进行求导,利用导数推出成立,再代入进行求证即可.
【小问1详解】
,定义域为.
当时,二次函数的图象开口向上,对称轴为.
①,即时,在上无零点;
②,即时,在上有1个零点;
③,即时,在有2个不同的零点;
综上,当时,在上无零点;
当时,在上有1个零点;
当时,在有2个不同的零点;
【小问2详解】
证明:由(1)分析知,当时,二次函数的图象开口向下,此时,在上有1个零点,设零点为,
则,解得,,
进一步,当时,,单调递增,当时,,单调递减,
所以,
不妨设,函数定义域为,
可得,
当时,,单调递增;当时,,单调递减,
所以当时,函数取得最大值,最大值,则成立,
此时,
故.
19. 阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点与两定点,的距离之比,是一个常数,那么动点的轨迹就是阿波罗尼斯圆,圆心在直线上.已知动点的轨迹是阿波罗尼斯圆,其方程为,定点分别为椭圆的右焦点与右顶点,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)如图,过右焦点斜率为的直线与椭圆相交于,(点在轴上方),点,是椭圆上异于,的两点,平分,平分.
①求的取值范围;
②将点、、看作一个阿波罗尼斯圆上的三点,若外接圆的面积为,求直线的方程.
【答案】(1);(2)①;②.
【解析】
【分析】(1)方法1,利用特殊值法,求得椭圆方程,方法2,利用定义整理得,再根据条件列式求得椭圆方程;方法3,利用定义进行整理,由为常数,求得系数,得到椭圆方程;(2)①首先由面积比值求得,令,则,利用坐标表示向量,求得,再求范围;②由阿波罗尼斯圆定义知,,,在以,为定点得阿波罗尼斯圆上,由几何关系列式得,求得,再根据,求得,即可计算直线方程.
【详解】(1)方法(1)特殊值法,令,,且,解得
∴,,椭圆的方程为
方法(2)设,由题意(常数),
整理得:,
故,又,解得:,.
∴,椭圆的方程为.
方法(3)设,则.
由题意
∵为常数,∴,又,解得:,,故
∴椭圆的方程为
(2)①由,又,
∴(或由角平分线定理得)
令,则,设,则有,
又直线的斜率,则,代入得:
,即,
∵,∴.
②由①知,,由阿波罗尼斯圆定义知,
,,在以,为定点得阿波罗尼斯圆上,设该圆圆心为,半径为,与直线的另一个交点为,
则有,即,解得:.
又,故,∴
又,
∴,
解得:,,
∴,∴直线的方程为.
【点睛】关键点点睛:本题考查轨迹问题,考查直线与椭圆的位置关系,以及外接圆,新定义的综合应用,属于难题,本题的关键是读懂题意,并根据几何关系进行消参,转化与化归,是本题的关键也是难点.0
1
2
3
4
相关试卷
这是一份河南省信阳市新县高级中学2024届高三考前第三次适应性考试数学试题,共2页。
这是一份河南省信阳市新县高级中学2024届高三考前第三次适应性考试数学试题,共2页。
这是一份河南省信阳市新县高级中学2024届高三考前第一次适应性考试数学试题,共2页。