所属成套资源:2024年高考数学第一轮复习精品讲义(学生版+解析)
2024年高考数学第一轮复习讲义第二章2.12 函数模型的应用(学生版+解析)
展开
这是一份2024年高考数学第一轮复习讲义第二章2.12 函数模型的应用(学生版+解析),共20页。
知识梳理
1.三种函数模型的性质
2.常见的函数模型
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)函数y=2x的函数值比y=x2的函数值大.( )
(2)某商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若九折出售,则每件还能获利.( )
(3)在(0,+∞)上,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xa(a>0)和y=lgax(a>1)的增长速度.( )
(4)在选择函数模型解决实际问题时,必须使所有的数据完全符合该函数模型.( )
教材改编题
1.当x越来越大时,下列函数中增长速度最快的是( )
A.y=5x B.y=lg5x
C.y=x5 D.y=5x
2.在某个物理实验中,测量得到变量x和变量y的几组数据,如下表:
则对x,y最适合的函数模型是( )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=lg2x
3.某超市的某种商品的日利润y(单位:元)与该商品的当日售价x(单位:元)之间的关系为y=-eq \f(x2,25)+12x-210,那么该商品的日利润最大时,当日售价为________元.
题型一 用函数图象刻画变化过程
例1 (1)血药浓度是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:
根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是( )
A.首次服用该药物1单位约10分钟后,药物发挥治疗作用
B.每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
D.首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒
听课记录:___________________________________________________________________
_____________________________________________________________________________
(2)根据一组试验数据画出的散点图如图所示.
现有如下5个函数模型:①y=0.6x-0.12;②y=2x-2.02;③y=2x-5.4x+6;④y=lg2x;⑤y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x+1.84.请从中选择一个函数模型,使它能近似地反映这些数据的规律,应选________.(填序号)
听课记录:___________________________________________________________________
_____________________________________________________________________________
思维升华 判断函数图象与实际问题变化过程相吻合的两种方法
(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选择函数图象.
(2)验证法:根据实际问题中两变量的变化快慢等特点,结合函数图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.
跟踪训练1 如图,点P在边长为1的正方形ABCD的边上运动,M是CD的中点,则当P沿A-B-C-M运动时,点P经过的路程x与△APM的面积y的函数y=f(x)的图象大致是下图中的( )
题型二 已知函数模型的实际问题
例2 (1)(2021·全国甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lg V.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(eq \r(10,10)≈1.259)( )
A.1.5 B.1.2 C.0.8 D.0.6
听课记录:___________________________________________________________________
_____________________________________________________________________________
(2)(2022·莆田质检)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P(单位:mg/L)与时间t(单位:h)间的关系为P=P0·e-kt,其中P0,k是正的常数.如果2 h后还剩下90%的污染物,5 h后还剩下30%的污染物,那么8 h后还剩下______%的污染物.
听课记录:___________________________________________________________________
_____________________________________________________________________________
思维升华 已知函数模型解决实际问题的关键
(1)认清所给函数模型,弄清哪些量为待定系数.
(2)根据已知利用待定系数法,确定模型中的待定系数.
(3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.
跟踪训练2 (1)在流行病学中,基本传染数是指每名感染者平均可传染的人数.假设某种传染病的基本传染数为R0,1个感染者在每个传染期会接触到N个新人,这N个人中有V个人接种过疫苗eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(V,N)称为接种率)),那么1个感染者传染人数为eq \f(R0,N)(N-V).已知某种传染病在某地的基本传染数R0=4,为了使1个感染者传染人数不超过1,则该地疫苗的接种率最小为( )
A.45% B.55% C.65% D.75%
(2)牛顿曾经提出了在常温环境下的温度冷却模型θ=θ0+(θ1-θ0)e-kt(t为时间,单位:分钟,θ0为环境温度,θ1为物体初始温度,θ为冷却后温度),假设一杯开水温度θ1=100 ℃,环境温度θ0=20 ℃,常数k=0.2,大约经过_______分钟水温降为40 ℃(参考数据:ln 2≈0.7)( )
A.10 B.9 C.8 D.7
题型三 构造函数模型的实际问题
例3 智能辅助驾驶已开始得到初步应用,其自动刹车的工作原理是用雷达测出车辆与障碍物之间的距离,并结合车速转化为所需时间,当此距离等于报警距离时就开始报警,等于危险距离时就自动刹车.若将报警时间划分为4段,分别为准备时间t0与人的反应时间t1,系统反应时间t2,制动时间t3,相应的距离分别为d0,d1,d2,d3,如图所示.当车速为v(米/秒),且01)
y=lgax(a>1)
y=xn(n>0)
在(0,+∞)上的增减性
单调递增
单调递增
单调递增
增长速度
越来越快
越来越慢
相对平稳
图象的变化
随x的增大逐渐表现为与____平行
随x的增大逐渐表现为与____平行
随n值的变化而各有不同
函数模型
函数解析式
一次函数模型
f(x)=ax+b(a,b为常数,a≠0)
二次函数模型
f(x)=ax2+bx+c(a,b,c为常数,a≠0)
反比例函数模型
f(x)=eq \f(k,x)+b(k,b为常数,k≠0)
指数函数模型
f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)
对数函数模型
f(x)=blgax+c(a,b,c为常数,a>0且a≠1,b≠0)
幂函数模型
f(x)=axα+b(a,b,α为常数,a≠0,α≠0)
x
0.50
0.99
2.01
3.98
y
-0.99
-0.01
0.98
2.00
阶段
准备
人的反应
系统反应
制动
时间
t0
t1=0.8秒
t2=0.2秒
t3
距离
d0=10米
d1
d2
d3=eq \f(v2,20k)米
§2.12 函数模型的应用
考试要求 1.了解指数函数、对数函数与一次函数增长速度的差异.2.理解“指数爆炸”“对数增长”“直线上升”等术语的含义.3.能选择合适的函数模型刻画现实问题的变化规律,了解函数模型在社会生活中的广泛应用.
知识梳理
1.三种函数模型的性质
2.常见的函数模型
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)函数y=2x的函数值比y=x2的函数值大.( × )
(2)某商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若九折出售,则每件还能获利.( × )
(3)在(0,+∞)上,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xa(a>0)和y=lgax(a>1)的增长速度.( √ )
(4)在选择函数模型解决实际问题时,必须使所有的数据完全符合该函数模型.( × )
教材改编题
1.当x越来越大时,下列函数中增长速度最快的是( )
A.y=5x B.y=lg5x
C.y=x5 D.y=5x
答案 D
解析 结合函数的性质可知,几种函数模型中,指数函数的增长速度最快.
2.在某个物理实验中,测量得到变量x和变量y的几组数据,如下表:
则对x,y最适合的函数模型是( )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=lg2x
答案 D
解析 根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B,C;将各数据代入函数y=lg2x,可知满足题意,故选D.
3.某超市的某种商品的日利润y(单位:元)与该商品的当日售价x(单位:元)之间的关系为y=-eq \f(x2,25)+12x-210,那么该商品的日利润最大时,当日售价为________元.
答案 150
解析 因为y=-eq \f(x2,25)+12x-210=-eq \f(1,25)(x-150)2+690,所以当x=150时,y取最大值,即该商品的利润最大时,当日售价为150元.
题型一 用函数图象刻画变化过程
例1 (1)血药浓度是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:
根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是( )
A.首次服用该药物1单位约10分钟后,药物发挥治疗作用
B.每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
D.首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒
答案 D
解析 从图象中可以看出,首次服用该药物1单位约10分钟后药物发挥治疗作用,A正确;根据图象可知,首次服用该药物1单位约1小时后的血药浓度达到最大值,由图象可知,当两次服药间隔小于2小时时,一定会产生药物中毒,B正确;服药5.5小时时,血药浓度等于最低有效浓度,此时再服药,血药浓度增加,可使药物持续发挥治疗作用,C正确;第一次服用该药物1单位4小时后与第2次服用该药物1单位1小时后,血药浓度之和大于最低中毒浓度,因此一定会发生药物中毒,D错误.
(2)根据一组试验数据画出的散点图如图所示.
现有如下5个函数模型:①y=0.6x-0.12;②y=2x-2.02;③y=2x-5.4x+6;④y=lg2x;⑤y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x+1.84.请从中选择一个函数模型,使它能近似地反映这些数据的规律,应选________.(填序号)
答案 ④
解析 由图可知上述点大体分布在函数y=lg2x的图象上,
故选择y=lg2x可以近似地反映这些数据的规律.
思维升华 判断函数图象与实际问题变化过程相吻合的两种方法
(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选择函数图象.
(2)验证法:根据实际问题中两变量的变化快慢等特点,结合函数图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.
跟踪训练1 如图,点P在边长为1的正方形ABCD的边上运动,M是CD的中点,则当P沿A-B-C-M运动时,点P经过的路程x与△APM的面积y的函数y=f(x)的图象大致是下图中的( )
答案 A
解析 当点P在AB上时,y=eq \f(1,2)×x×1=eq \f(1,2)x,0≤x≤1;
当点P在BC上时,y=S正方形ABCD-S△ADM-S△ABP-S△PCM=-eq \f(1,4)x+eq \f(3,4),1
相关学案
这是一份2024年高考数学第一轮复习讲义第二章2.2 函数的单调性与最值(学生版+解析),共15页。
这是一份2024年高考数学第一轮复习讲义第二章2.1 函数的概念及其表示(学生版+解析),共16页。
这是一份最高考文数考点一遍过(讲义) 考点10 函数模型及其应用,共25页。学案主要包含了常见的函数模型,几类函数模型的增长差异,函数模型的应用等内容,欢迎下载使用。