年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年高考数学第一轮复习讲义第二章2.12 函数模型的应用(学生版+解析)

    2024年高考数学第一轮复习讲义第二章2.12 函数模型的应用(学生版+解析)第1页
    2024年高考数学第一轮复习讲义第二章2.12 函数模型的应用(学生版+解析)第2页
    2024年高考数学第一轮复习讲义第二章2.12 函数模型的应用(学生版+解析)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考数学第一轮复习讲义第二章2.12 函数模型的应用(学生版+解析)

    展开

    这是一份2024年高考数学第一轮复习讲义第二章2.12 函数模型的应用(学生版+解析),共20页。

    知识梳理
    1.三种函数模型的性质
    2.常见的函数模型
    思考辨析
    判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)函数y=2x的函数值比y=x2的函数值大.( )
    (2)某商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若九折出售,则每件还能获利.( )
    (3)在(0,+∞)上,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xa(a>0)和y=lgax(a>1)的增长速度.( )
    (4)在选择函数模型解决实际问题时,必须使所有的数据完全符合该函数模型.( )
    教材改编题
    1.当x越来越大时,下列函数中增长速度最快的是( )
    A.y=5x B.y=lg5x
    C.y=x5 D.y=5x
    2.在某个物理实验中,测量得到变量x和变量y的几组数据,如下表:
    则对x,y最适合的函数模型是( )
    A.y=2x B.y=x2-1
    C.y=2x-2 D.y=lg2x
    3.某超市的某种商品的日利润y(单位:元)与该商品的当日售价x(单位:元)之间的关系为y=-eq \f(x2,25)+12x-210,那么该商品的日利润最大时,当日售价为________元.
    题型一 用函数图象刻画变化过程
    例1 (1)血药浓度是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:
    根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是( )
    A.首次服用该药物1单位约10分钟后,药物发挥治疗作用
    B.每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
    C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
    D.首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒
    听课记录:___________________________________________________________________
    _____________________________________________________________________________
    (2)根据一组试验数据画出的散点图如图所示.
    现有如下5个函数模型:①y=0.6x-0.12;②y=2x-2.02;③y=2x-5.4x+6;④y=lg2x;⑤y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x+1.84.请从中选择一个函数模型,使它能近似地反映这些数据的规律,应选________.(填序号)
    听课记录:___________________________________________________________________
    _____________________________________________________________________________
    思维升华 判断函数图象与实际问题变化过程相吻合的两种方法
    (1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选择函数图象.
    (2)验证法:根据实际问题中两变量的变化快慢等特点,结合函数图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.
    跟踪训练1 如图,点P在边长为1的正方形ABCD的边上运动,M是CD的中点,则当P沿A-B-C-M运动时,点P经过的路程x与△APM的面积y的函数y=f(x)的图象大致是下图中的( )
    题型二 已知函数模型的实际问题
    例2 (1)(2021·全国甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lg V.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(eq \r(10,10)≈1.259)( )
    A.1.5 B.1.2 C.0.8 D.0.6
    听课记录:___________________________________________________________________
    _____________________________________________________________________________
    (2)(2022·莆田质检)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P(单位:mg/L)与时间t(单位:h)间的关系为P=P0·e-kt,其中P0,k是正的常数.如果2 h后还剩下90%的污染物,5 h后还剩下30%的污染物,那么8 h后还剩下______%的污染物.
    听课记录:___________________________________________________________________
    _____________________________________________________________________________
    思维升华 已知函数模型解决实际问题的关键
    (1)认清所给函数模型,弄清哪些量为待定系数.
    (2)根据已知利用待定系数法,确定模型中的待定系数.
    (3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.
    跟踪训练2 (1)在流行病学中,基本传染数是指每名感染者平均可传染的人数.假设某种传染病的基本传染数为R0,1个感染者在每个传染期会接触到N个新人,这N个人中有V个人接种过疫苗eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(V,N)称为接种率)),那么1个感染者传染人数为eq \f(R0,N)(N-V).已知某种传染病在某地的基本传染数R0=4,为了使1个感染者传染人数不超过1,则该地疫苗的接种率最小为( )
    A.45% B.55% C.65% D.75%
    (2)牛顿曾经提出了在常温环境下的温度冷却模型θ=θ0+(θ1-θ0)e-kt(t为时间,单位:分钟,θ0为环境温度,θ1为物体初始温度,θ为冷却后温度),假设一杯开水温度θ1=100 ℃,环境温度θ0=20 ℃,常数k=0.2,大约经过_______分钟水温降为40 ℃(参考数据:ln 2≈0.7)( )
    A.10 B.9 C.8 D.7
    题型三 构造函数模型的实际问题
    例3 智能辅助驾驶已开始得到初步应用,其自动刹车的工作原理是用雷达测出车辆与障碍物之间的距离,并结合车速转化为所需时间,当此距离等于报警距离时就开始报警,等于危险距离时就自动刹车.若将报警时间划分为4段,分别为准备时间t0与人的反应时间t1,系统反应时间t2,制动时间t3,相应的距离分别为d0,d1,d2,d3,如图所示.当车速为v(米/秒),且01)
    y=lgax(a>1)
    y=xn(n>0)
    在(0,+∞)上的增减性
    单调递增
    单调递增
    单调递增
    增长速度
    越来越快
    越来越慢
    相对平稳
    图象的变化
    随x的增大逐渐表现为与____平行
    随x的增大逐渐表现为与____平行
    随n值的变化而各有不同
    函数模型
    函数解析式
    一次函数模型
    f(x)=ax+b(a,b为常数,a≠0)
    二次函数模型
    f(x)=ax2+bx+c(a,b,c为常数,a≠0)
    反比例函数模型
    f(x)=eq \f(k,x)+b(k,b为常数,k≠0)
    指数函数模型
    f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0)
    对数函数模型
    f(x)=blgax+c(a,b,c为常数,a>0且a≠1,b≠0)
    幂函数模型
    f(x)=axα+b(a,b,α为常数,a≠0,α≠0)
    x
    0.50
    0.99
    2.01
    3.98
    y
    -0.99
    -0.01
    0.98
    2.00
    阶段
    准备
    人的反应
    系统反应
    制动
    时间
    t0
    t1=0.8秒
    t2=0.2秒
    t3
    距离
    d0=10米
    d1
    d2
    d3=eq \f(v2,20k)米
    §2.12 函数模型的应用
    考试要求 1.了解指数函数、对数函数与一次函数增长速度的差异.2.理解“指数爆炸”“对数增长”“直线上升”等术语的含义.3.能选择合适的函数模型刻画现实问题的变化规律,了解函数模型在社会生活中的广泛应用.
    知识梳理
    1.三种函数模型的性质
    2.常见的函数模型
    思考辨析
    判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)函数y=2x的函数值比y=x2的函数值大.( × )
    (2)某商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若九折出售,则每件还能获利.( × )
    (3)在(0,+∞)上,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xa(a>0)和y=lgax(a>1)的增长速度.( √ )
    (4)在选择函数模型解决实际问题时,必须使所有的数据完全符合该函数模型.( × )
    教材改编题
    1.当x越来越大时,下列函数中增长速度最快的是( )
    A.y=5x B.y=lg5x
    C.y=x5 D.y=5x
    答案 D
    解析 结合函数的性质可知,几种函数模型中,指数函数的增长速度最快.
    2.在某个物理实验中,测量得到变量x和变量y的几组数据,如下表:
    则对x,y最适合的函数模型是( )
    A.y=2x B.y=x2-1
    C.y=2x-2 D.y=lg2x
    答案 D
    解析 根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B,C;将各数据代入函数y=lg2x,可知满足题意,故选D.
    3.某超市的某种商品的日利润y(单位:元)与该商品的当日售价x(单位:元)之间的关系为y=-eq \f(x2,25)+12x-210,那么该商品的日利润最大时,当日售价为________元.
    答案 150
    解析 因为y=-eq \f(x2,25)+12x-210=-eq \f(1,25)(x-150)2+690,所以当x=150时,y取最大值,即该商品的利润最大时,当日售价为150元.
    题型一 用函数图象刻画变化过程
    例1 (1)血药浓度是指药物吸收后在血浆内的总浓度.药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:
    根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是( )
    A.首次服用该药物1单位约10分钟后,药物发挥治疗作用
    B.每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
    C.每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
    D.首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒
    答案 D
    解析 从图象中可以看出,首次服用该药物1单位约10分钟后药物发挥治疗作用,A正确;根据图象可知,首次服用该药物1单位约1小时后的血药浓度达到最大值,由图象可知,当两次服药间隔小于2小时时,一定会产生药物中毒,B正确;服药5.5小时时,血药浓度等于最低有效浓度,此时再服药,血药浓度增加,可使药物持续发挥治疗作用,C正确;第一次服用该药物1单位4小时后与第2次服用该药物1单位1小时后,血药浓度之和大于最低中毒浓度,因此一定会发生药物中毒,D错误.
    (2)根据一组试验数据画出的散点图如图所示.
    现有如下5个函数模型:①y=0.6x-0.12;②y=2x-2.02;③y=2x-5.4x+6;④y=lg2x;⑤y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x+1.84.请从中选择一个函数模型,使它能近似地反映这些数据的规律,应选________.(填序号)
    答案 ④
    解析 由图可知上述点大体分布在函数y=lg2x的图象上,
    故选择y=lg2x可以近似地反映这些数据的规律.
    思维升华 判断函数图象与实际问题变化过程相吻合的两种方法
    (1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选择函数图象.
    (2)验证法:根据实际问题中两变量的变化快慢等特点,结合函数图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.
    跟踪训练1 如图,点P在边长为1的正方形ABCD的边上运动,M是CD的中点,则当P沿A-B-C-M运动时,点P经过的路程x与△APM的面积y的函数y=f(x)的图象大致是下图中的( )
    答案 A
    解析 当点P在AB上时,y=eq \f(1,2)×x×1=eq \f(1,2)x,0≤x≤1;
    当点P在BC上时,y=S正方形ABCD-S△ADM-S△ABP-S△PCM=-eq \f(1,4)x+eq \f(3,4),1

    相关学案

    2024年高考数学第一轮复习讲义第二章2.2 函数的单调性与最值(学生版+解析):

    这是一份2024年高考数学第一轮复习讲义第二章2.2 函数的单调性与最值(学生版+解析),共15页。

    2024年高考数学第一轮复习讲义第二章2.1 函数的概念及其表示(学生版+解析):

    这是一份2024年高考数学第一轮复习讲义第二章2.1 函数的概念及其表示(学生版+解析),共16页。

    最高考文数考点一遍过(讲义) 考点10 函数模型及其应用:

    这是一份最高考文数考点一遍过(讲义) 考点10 函数模型及其应用,共25页。学案主要包含了常见的函数模型,几类函数模型的增长差异,函数模型的应用等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map