所属成套资源:2024年高考数学第一轮复习精品讲义(学生版+解析)
2024年高考数学第一轮复习讲义第九章9.4 直线与圆、圆与圆的位置关系(学生版+解析)
展开
这是一份2024年高考数学第一轮复习讲义第九章9.4 直线与圆、圆与圆的位置关系(学生版+解析),共20页。
知识梳理
1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)
2.圆与圆的位置关系(⊙O1,⊙O2的半径分别为r1,r2,d=|O1O2|)
3.直线被圆截得的弦长
(1)几何法:弦心距d、半径r和弦长|AB|的一半构成直角三角形,弦长|AB|=____________.
(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,代入,消去y,得关于x的一元二次方程,则|MN|=________________________________________.
常用结论
1.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
(2)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.
2.圆与圆的位置关系的常用结论
(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R);
②过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(其中不含圆C2,所以注意检验C2是否满足题意,以防丢解).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若两圆没有公共点,则两圆一定外离.( )
(2)若两圆的圆心距小于两圆的半径之和,则两圆相交.( )
(3)若直线的方程与圆的方程组成的方程组有且只有一组实数解,则直线与圆相切.( )
(4)在圆中最长的弦是直径.( )
教材改编题
1.直线3x+4y=5与圆x2+y2=16的位置关系是( )
A.相交 B.相切
C.相离 D.相切或相交
2.直线m:x+y-1=0被圆M:x2+y2-2x-4y=0截得的弦长为( )
A.4 B.2eq \r(3) C.eq \f(1,2) D.eq \f(1,3)
3.若圆C1:x2+y2=16与圆C2:(x-a)2+y2=1相切,则a的值为( )
A.±3 B.±5
C.3或5 D.±3或±5
题型一 直线与圆的位置关系
命题点1 位置关系的判断
例1 (1)(2021·新高考全国Ⅱ改编)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法不正确的是( )
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
听课记录:____________________________________________________________________
______________________________________________________________________________
(2)直线kx-y+2-k=0与圆x2+y2-2x-8=0的位置关系为( )
A.相交、相切或相离 B.相交或相切
C.相交 D.相切
听课记录:____________________________________________________________________
______________________________________________________________________________
思维升华 判断直线与圆的位置关系的常见方法
(1)几何法:利用d与r的关系判断.
(2)代数法:联立方程之后利用Δ判断.
(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.
命题点2 弦长问题
例2 (1)(2022·北京模拟)已知圆x2+y2=4截直线y=k(x-2)所得弦的长度为2,那么实数k的值为( )
A.±eq \f(\r(3),3) B.eq \f(\r(3),3) C.eq \r(3) D.±eq \r(3)
(2)(2023·滁州模拟)已知过点P(0,1)的直线l与圆x2+y2+2x-6y+6=0相交于A,B两点,则当|AB|=2eq \r(3)时,直线l的方程为____________________.
思维升华 弦长的两种求法
(1)代数法:将直线和圆的方程联立方程组,根据弦长公式求弦长.
(2)几何法:若弦心距为d,圆的半径长为r,则弦长l=2eq \r(r2-d2).
命题点3 切线问题
例3 已知点P(eq \r(2)+1,2-eq \r(2)),点M(3,1),圆C:(x-1)2+(y-2)2=4.
(1)求过点P的圆C的切线方程;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)求过点M的圆C的切线方程,并求出切线长.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思维升华 当切线方程斜率存在时,圆的切线方程的求法
(1)几何法:设切线方程为y-y0=k(x-x0),利用点到直线的距离公式表示出圆心到切线的距离d,然后令d=r,进而求出k.
(2)代数法:设切线方程为y-y0=k(x-x0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k.
注意验证斜率不存在的情况.
命题点4 直线与圆位置关系中的最值(范围)问题
例4 (2023·龙岩模拟)已知点P(x0,y0)是直线l:x+y=4上的一点,过点P作圆O:x2+y2=2的两条切线,切点分别为A,B,则四边形PAOB的面积的最小值为________.
听课记录:____________________________________________________________________
______________________________________________________________________________
思维升华 涉及与圆的切线有关的线段长度范围(最值)问题,解题关键是能够把所求线段长度表示为关于圆心与直线上的点的距离的函数的形式,利用求函数值域的方法求得结果.
跟踪训练1 (1)(2022·宣城模拟)在平面直角坐标系中,直线eq \r(3)xcs α+eq \r(2)ysin α=1(α∈R)与圆O:x2+y2=eq \f(1,2)的位置关系为( )
A.相切 B.相交
C.相离 D.相交或相切
(2)(2023·昆明模拟)直线2x·sin θ+y=0被圆x2+y2-2eq \r(5)y+2=0截得的弦长的最大值为( )
A.2eq \r(5) B.2eq \r(3) C.3 D.2eq \r(2)
题型二 圆与圆的位置关系
例5 (1)(2023·扬州联考)已知圆C:(x-1)2+(y+2eq \r(2))2=16和两点A(0,-m),B(0,m),若圆C上存在点P,使得AP⊥BP,则m的最大值为( )
A.5 B.6 C.7 D.8
听课记录:____________________________________________________________________
______________________________________________________________________________
(2)圆C1:x2+y2-2x+10y-24=0与圆C2:x2+y2+2x+2y-8=0的公共弦所在直线的方程为______________,公共弦长为________.
听课记录:____________________________________________________________________
______________________________________________________________________________
思维升华 (1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.
(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.
跟踪训练2 (1)(2023·齐齐哈尔模拟)已知圆M:x2+y2-4y=0与圆N:x2+y2-2x-3=0,则圆M与圆N的位置关系为( )
A.内含 B.相交 C.外切 D.外离
(2)(2022·新高考全国Ⅰ)写出与圆x2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程________.相离
相切
相交
图形
量化
方程观点
Δ____0
Δ____0
Δ____0
几何观点
d____r
d____r
d____r
图形
量的关系
外离
外切
相交
内切
内含
§9.4 直线与圆、圆与圆的位置关系
考试要求 1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题与实际问题.
知识梳理
1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)
2.圆与圆的位置关系(⊙O1,⊙O2的半径分别为r1,r2,d=|O1O2|)
3.直线被圆截得的弦长
(1)几何法:弦心距d、半径r和弦长|AB|的一半构成直角三角形,弦长|AB|=2eq \r(r2-d2).
(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,代入,消去y,得关于x的一元二次方程,则|MN|=eq \r(1+k2)·eq \r(xM+xN2-4xMxN).
常用结论
1.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
(2)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.
2.圆与圆的位置关系的常用结论
(1)两圆相交时,其公共弦所在的直线方程由两圆方程相减得到.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R);
②过圆C1:x2+y2+D1x+E1y+F1=0和圆C2:x2+y2+D2x+E2y+F2=0交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(其中不含圆C2,所以注意检验C2是否满足题意,以防丢解).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若两圆没有公共点,则两圆一定外离.( × )
(2)若两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
(3)若直线的方程与圆的方程组成的方程组有且只有一组实数解,则直线与圆相切.( √ )
(4)在圆中最长的弦是直径.( √ )
教材改编题
1.直线3x+4y=5与圆x2+y2=16的位置关系是( )
A.相交 B.相切
C.相离 D.相切或相交
答案 A
解析 圆心到直线的距离为d=eq \f(5,\r(32+42))=1r2,
所以d=eq \f(r2,\r(a2+b2))
相关学案
这是一份2024年高考数学第一轮复习精品导学案第63讲 圆与圆的位置关系(学生版)+教师版,共2页。
这是一份高考数学统考一轮复习第9章9.4直线与圆圆与圆的位置关系学案,共7页。学案主要包含了知识重温,小题热身等内容,欢迎下载使用。
这是一份2023届高考一轮复习讲义(理科)第九章 平面解析几何 第4讲 直线与圆、圆与圆的位置关系学案,共18页。学案主要包含了知识梳理,习题改编等内容,欢迎下载使用。