【二轮复习】2024年中考数学 题型11 综合探究题 类型1 非动态探究题(专题训练)
展开(1)若正方形的边长为2,E是的中点.
①如图1,当时,求证:;
②如图2,当时,求的长;
(2)如图3,延长,交于点G,当时,求证:.
2.(2021·四川省达州市)某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:
【观察与猜想】
(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则DECF的值为______ ;
(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则CEBD的值为______ ;
【类比探究】
(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE⋅AB=CF⋅AD;
【拓展延伸】
(4)如图4,在Rt△ABD中,∠BAD=90°,AD=9,tan∠ADB=13,将△ABD沿BD翻折,点A落在点C处得△CBD,点E,F分别在边AB,AD上,连接DE,CF,DE⊥CF.
①求DECF的值;
②连接BF,若AE=1,直接写出BF的长度.
3.(2023·甘肃武威·统考中考真题)【模型建立】
(1)如图1,和都是等边三角形,点关于的对称点在边上.
①求证:;
②用等式写出线段,,的数量关系,并说明理由.
【模型应用】
(2)如图2,是直角三角形,,,垂足为,点关于的对称点在边上.用等式写出线段,,的数量关系,并说明理由.
【模型迁移】
(3)在(2)的条件下,若,,求的值.
4.(2021·湖北中考真题)问题提出 如图(1),在和中,,,,点在内部,直线与交于点,线段,,之间存在怎样的数量关系?
问题探究 (1)先将问题特殊化.如图(2),当点,重合时,直接写出一个等式,表示,,之间的数量关系;
(2)再探究一般情形.如图(1),当点,不重合时,证明(1)中的结论仍然成立.
问题拓展 如图(3),在和中,,,(是常数),点在内部,直线与交于点,直接写出一个等式,表示线段,,之间的数量关系.
5.(2023·湖北武汉·统考中考真题)问题提出:如图(1),是菱形边上一点,是等腰三角形,,交于点,探究与的数量关系.
问题探究:
(1)先将问题特殊化,如图(2),当时,直接写出的大小;
(2)再探究一般情形,如图(1),求与的数量关系.
问题拓展:
(3)将图(1)特殊化,如图(3),当时,若,求的值.
6.(2021·浙江中考真题)(证明体验)
(1)如图1,为的角平分线,,点E在上,.求证:平分.
(思考探究)
(2)如图2,在(1)的条件下,F为上一点,连结交于点G.若,,,求的长.
(拓展延伸)
(3)如图3,在四边形中,对角线平分,点E在上,.若,求的长.
7.(2023·山东·统考中考真题)(1)如图1,在矩形中,点,分别在边,上,,垂足为点.求证:.
【问题解决】
(2)如图2,在正方形中,点,分别在边,上,,延长到点,使,连接.求证:.
【类比迁移】
(3)如图3,在菱形中,点,分别在边,上,,,,求的长.
8.(2021·安徽中考真题)如图1,在四边形ABCD中,,点E在边BC上,且,,作交线段AE于点F,连接BF.
(1)求证:;
(2)如图2,若,,,求BE的长;
(3)如图3,若BF的延长线经过AD的中点M,求的值.
9.(2023·黑龙江·统考中考真题)如图①,和是等边三角形,连接,点F,G,H分别是和的中点,连接.易证:.
若和都是等腰直角三角形,且,如图②:若和都是等腰三角形,且,如图③:其他条件不变,判断和之间的数量关系,写出你的猜想,并利用图②或图③进行证明.
10.(2021·湖南中考真题)如图,在中,,N是边上的一点,D为的中点,过点A作的平行线交的延长线于T,且,连接.
(1)求证:;
(2)在如图中上取一点O,使,作N关于边的对称点M,连接、、、、得如图.
①求证:;
②设与相交于点P,求证:.
11.(2023·广东深圳·统考中考真题)(1)如图,在矩形中,为边上一点,连接,
①若,过作交于点,求证:;
②若时,则______.
(2)如图,在菱形中,,过作交的延长线于点,过作交于点,若时,求的值.
(3)如图,在平行四边形中,,,,点在上,且,点为上一点,连接,过作交平行四边形的边于点,若时,请直接写出的长.
12.(2020•山西)综合与实践
问题情境:
如图①,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.
猜想证明:
(1)试判断四边形BE'FE的形状,并说明理由;
(2)如图②,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明;
解决问题:
(3)如图①,若AB=15,CF=3,请直接写出DE的长.
13.(2020•湘西州)问题背景:如图1,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.
小李同学探究此问题的方法是:延长FC到G,使CG=AE,连接BG,先证明△BCG≌△BAE,再证明△BFG≌△BFE,可得出结论,他的结论就是 ;
探究延伸1:如图2,在四边形ABCD中,∠BAD=90°,∠BCD=90°,BA=BC,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F,上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由;
探究延伸2:如图3,在四边形ABCD中,BA=BC,∠BAD+∠BCD=180°,∠ABC=2∠MBN,∠MBN绕B点旋转.它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由;
实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处.舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处.且指挥中心观测两舰艇视线之间的夹角为70°.试求此时两舰艇之间的距离.
14.(2020•扬州)如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.
(1)求证:OC∥AD;
(2)如图2,若DE=DF,求AEAF的值;
(3)当四边形ABCD的周长取最大值时,求DEDF的值.
15.(2020•南京)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.
(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.
为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.
(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).
①生态保护区是正方形区域,位置如图③所示;
②生态保护区是圆形区域,位置如图④所示.
16.(2020•达州)(1)[阅读与证明]
如图1,在正△ABC的外角∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.
①完成证明:∵点E是点C关于AM的对称点,
∴∠AGE=90°,AE=AC,∠1=∠2.
∵正△ABC中,∠BAC=60°,AB=AC,
∴AE=AB,得∠3=∠4.
在△ABE中,∠1+∠2+60°+∠3+∠4=180°,∴∠1+∠3= °.
在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG= °.
②求证:BF=AF+2FG.
(2)[类比与探究]
把(1)中的“正△ABC”改为“正方形ABDC”,其余条件不变,如图2.类比探究,可得:
①∠FEG= °;
②线段BF、AF、FG之间存在数量关系 .
(3)[归纳与拓展]
如图3,点A在射线BH上,AB=AC,∠BAC=α(0°<α<180°),在∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.则线段BF、AF、GF之间的数量关系为 .
题型11 综合探究题 类型一 非动态探究题(专题训练)-2024年中考数学二轮复习满分冲刺题型突破(全国通用): 这是一份题型11 综合探究题 类型一 非动态探究题(专题训练)-2024年中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型十一综合探究题类型一非动态探究题专题训练原卷版docx、题型十一综合探究题类型一非动态探究题专题训练解析版docx等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。
【二轮复习】中考数学 题型11 综合探究题 类型4 与旋转有关的探究题(专题训练): 这是一份【二轮复习】中考数学 题型11 综合探究题 类型4 与旋转有关的探究题(专题训练),文件包含二轮复习中考数学题型11综合探究题类型4与旋转有关的探究题专题训练教师版docx、二轮复习中考数学题型11综合探究题类型4与旋转有关的探究题专题训练学生版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。
【二轮复习】中考数学 题型11 综合探究题 类型1 非动态探究题(专题训练): 这是一份【二轮复习】中考数学 题型11 综合探究题 类型1 非动态探究题(专题训练),文件包含二轮复习中考数学题型11综合探究题类型1非动态探究题专题训练教师版docx、二轮复习中考数学题型11综合探究题类型1非动态探究题专题训练学生版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。