终身会员
搜索
    上传资料 赚现金

    专题28 圆中的定弦定角和最大张角模型-中考数学几何模型(重点专练)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      专题28 圆中的定弦定角和最大张角模型(教师版)-中考数学几何模型(重点专练).docx
    • 学生
      专题28 圆中的定弦定角和最大张角模型(学生版)-中考数学几何模型(重点专练).docx
    专题28 圆中的定弦定角和最大张角模型(教师版)-中考数学几何模型(重点专练)第1页
    专题28 圆中的定弦定角和最大张角模型(教师版)-中考数学几何模型(重点专练)第2页
    专题28 圆中的定弦定角和最大张角模型(教师版)-中考数学几何模型(重点专练)第3页
    专题28 圆中的定弦定角和最大张角模型(学生版)-中考数学几何模型(重点专练)第1页
    专题28 圆中的定弦定角和最大张角模型(学生版)-中考数学几何模型(重点专练)第2页
    专题28 圆中的定弦定角和最大张角模型(学生版)-中考数学几何模型(重点专练)第3页
    还剩24页未读, 继续阅读
    下载需要40学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题28 圆中的定弦定角和最大张角模型-中考数学几何模型(重点专练)

    展开

    这是一份专题28 圆中的定弦定角和最大张角模型-中考数学几何模型(重点专练),文件包含专题28圆中的定弦定角和最大张角模型教师版-中考数学几何模型重点专练docx、专题28圆中的定弦定角和最大张角模型学生版-中考数学几何模型重点专练docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。



    【模型1】定弦定角模型
    如图28-1,在中,BC的长为定值,为定角度,
    (1)确定点A的运动轨迹,有3种情况:
    ①如图28-2,当时,点A的运动轨迹为优弧BAC(不与B、C点重合);
    ②如图28-3,当时,点A的运动轨迹为⊙O(不与点B、C重合);
    ③如图28-4,当时,点A的运动轨迹为劣弧BAC(不与B、C点重合)。
    (2)构成等腰三角形(AB=AC)时:点A到BC的距离最大,且此时的面积最大。
    【模型变式1】
    如图28-5,已知点A、B是的边PF上的两个定点,点Q是边PE上一动点,则当点Q在何处时,最大。
    当的外接圆与边PE相切于点Q时,最大。
    【证明】如图28-6,作的外接圆⊙O,设点为PE上不同与Q点的任意一点,连接、,与⊙O交于点D,连接BD,
    当的外接圆与边PE相切于点Q时,最大。
    【例1】如图,在中,,,,过点作的平行线,为直线上一动点,为的外接圆,直线交于点,则的最小值为__________.
    【例2】数学概念
    若点在的内部,且、和中有两个角相等,则称是的“等角点”,特别地,若这三个角都相等,则称是的“强等角点”.
    理解概念
    (1)若点是的等角点,且,则的度数是 .
    (2)已知点在的外部,且与点在的异侧,并满足,作的外接圆,连接,交圆于点.当的边满足下面的条件时,求证:是的等角点.(要求:只选择其中一道题进行证明!)
    ①如图①,
    ②如图②,
    深入思考
    (3)如图③,在中,、、均小于,用直尺和圆规作它的强等角点.(不写作法,保留作图痕迹)
    (4)下列关于“等角点”、“强等角点”的说法:
    ①直角三角形的内心是它的等角点;
    ②等腰三角形的内心和外心都是它的等角点;
    ③正三角形的中心是它的强等角点;
    ④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;
    ⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)
    一、单选题
    1.如图,C,D是上直径AB两侧的两点,若,则的度数是( )
    A.50°B.60°C.80°D.70°
    2.如图,四边形内接于,连接,,且,,则的度数为( )
    A.B.C.D.
    3.如图,,是上直径两侧的两点.设,则( )
    A.B.C.D.
    4.如图,为的直径,是的弦,,则的度数为( )
    A.B.C.D.
    二、填空题
    5.如图,点在半圆上,半径,,点在弧上移动,连接,作,垂足为,连接,点在移动的过程中,的最小值是______.
    6.如图,已知、在以为直径的上,若,则的度数是_________.
    7.如图,直线l与⊙O相交于点B、D,点A、C是直线l两侧的圆弧上的动点,若⊙O的半径为1,∠A=30°,那么四边形ABCD的面积的最大值是_______.
    8.如图,在⊙O中,弦AB、CD相交于点E,∠BAC=50°,∠AED=75°,则的度数是_________°.
    9.如图,∠MAN=45°,B、C为AN上两点,AB=1,BC=3,D为AM上的一个动点,过B、C、D三点作⊙O,当 sin∠BDC的值最大时,⊙O的半径为_________
    三、解答题
    10.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”.如图所示,点、、、分别是“蛋圆”与坐标轴的交点,已知点的坐标为,为半圆的直径,半圆圆心的坐标为,半圆半径为.
    (1)求“蛋圆”抛物线部分的解析式及“蛋圆”的弦的长;
    (2)已知点是“蛋圆”上的一点(不与点,点重合),点关于轴的对称点是点,若点也在“蛋圆”上,求点坐标;
    (3)点是“蛋圆”外一点,满足,当最大时,直接写出点的坐标.
    11.如图,抛物线交x轴于点,,D是抛物线的顶点,P是抛物线上的动点,点P的横坐标为,交直线l:于点E,AP交DE于点F,交y轴于点Q.
    (1)求抛物线的表达式;
    (2)设的面积为,的面积为,当时,求点P的坐标;
    (3)连接BQ,点M在抛物线的对称轴上(位于第一象限内),且,在点P从点B运动到点C的过程中,点M也随之运动,直接写出点M的纵坐标t的取值范围.
    12.一个角的顶点在圆外,两边都与该圆相交,则称这个角是它所夹的较大的弧所对的圆外角.
    (1)证明:一条弧所对的圆周角大于它所对的圆外角;
    (2)应用(1)的结论,解决下面的问题:某市博物馆近日展出当地出土的珍贵文物,该市小学生合唱队计划组织120名队员前去参观,队员身高的频数分布直方图如图1所示.该文物高度为,放置文物的展台高度为,如图2所示.为了让参观的队员站在最理想的观看位置,需要使其观看该文物的视角最大(视角:文物最高点P、文物最低点Q、参观者的眼睛A所形成的),则分隔参观者与展台的围栏应放在距离展台多远的地方?请说明理由.(说明:①参观者眼睛A与地面的距离近似于身高;②通常围栏的摆放位置需考虑参观者的平均身高)
    13.如图,是的外接圆,与相切于点D,分别交,的延长线于点E和F,连接交于点N,的平分线交于点M.
    (1)求证:平分;
    (2)若,,求线段的长.

    相关试卷

    2024年中考数学几何模型专项复习讲与练 模型37 圆——定弦定角模型-原卷版+解析:

    这是一份2024年中考数学几何模型专项复习讲与练 模型37 圆——定弦定角模型-原卷版+解析,共18页。

    中考数学几何模型专项复习 模型37 圆——定弦定角模型-(原卷版+解析):

    这是一份中考数学几何模型专项复习 模型37 圆——定弦定角模型-(原卷版+解析),共18页。

    中考数学二轮专题圆中重要模型——定角定高米勒最大张角:

    这是一份中考数学二轮专题圆中重要模型——定角定高米勒最大张角,共8页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题28 圆中的定弦定角和最大张角模型-中考数学几何模型(重点专练)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map