2024年山东省临沂市罗庄区九年级中考二模数学试题(原卷版+解析版)
展开(满分120分,时间120分钟)
注意事项:1.答题前,请先认真浏览试卷;然后按要求操作;
2.答题时,端正心态,认真审题,认真书写,规范作图,保持卷面整洁!
一、单选题(本题共10小题,每小题3分,共30分,每小题只有一个选项符合要求)
1. 计算( )
A. B. 1C. D. 5
2. 下列图形由正多边形和圆弧组成,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3. 2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功,C919可储存约186000升燃油,将数据186000用科学记数法表示为( )
A. B. C. D.
4. 蛋壳黑陶杯因其“器壁薄如蛋壳,表面乌黑光亮”而得名,是新石器时代山东龙山文化的特征性器物,也是山东博物馆十大镇馆之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )
A. 主视图与左视图相同B. 主视图与俯视图相同
C. 左视图与俯视图相同D. 三种视图都相同
5. 下列运算正确的是( )
A. B.
C. D.
6. 下列尺规作图不能得到平行线的是( )
A. B.
C. D.
7. 计算的结果等于( )
A. B. C. D.
8. 如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )
A. B. C. D. 1
9. 工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )
A. 10cmB. 15cmC. 20cmD. 24cm
10. 如图①,在中,动点从点出发,以的速度向点的方向运动,设运动时间为,,与之间函数图象如图②所示,则图②中最低点的纵坐标是( )
A. 6B. 8C. 9D. 11
二、填空题(本题共6小题,每小题3分,共18分)
11. 使有意义的x的取值范围是_______.
12. 如图,在菱形中,为菱形的对角线,,点为中点,则的长为_______________.
13. 方程=0的解是_____.
14. 如图1所示是一款带毛刷的圆形扫地机器人,它的俯视图如图2所示,的直径为,毛刷的一端为固定点,另一端为点,毛刷绕着点旋转形成的圆弧交于点,且三点在同一直线上.则图中阴影部分的周长为______.
15. 如图,四边形是正方形,顶点B在抛物线的图象上,若正方形的边长为,且边与y轴的负半轴的夹角为,则a的值是______.
16. 烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护。通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示;如十一烷、十二烷……)等,甲烷的化学式为,乙烷的化学式为,丙烷的化学式为……,其分子结构模型如图所示,按照此规律,十六烷的化学式为______.
三、解答题(本题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤)
17. (1)计算:;
(2)解不等式,并把它的解集表示在数轴上.
18. 随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.
(1)求这两个月中该景区游客人数的月平均增长率;
(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
19. 根据以下材料,完成项目任务,
20. 学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩(单位:分)进行统计:
七年级 86 94 79 84 71 90 76 83 90 87
八年级 88 76 90 78 87 93 75 87 87 79
整理如下:
根据以上信息,回答下列问题:
(1)填空:_______,________.
同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;
(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;
(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由.
21. 如图,正比例函数与反比例函数的图象交于A、B两点,A的横坐标为,B的纵坐标为.
(1)求反比例函数的表达式.
(2)观察图象,直接写出不等式解集.
(3)将直线向上平移n个单位,交双曲线于C、D两点,交坐标轴于点E、F,连接、,若面积为20,求直线的表达式.
22. 如图,内接于,,过点作的垂线,交于点,并与的延长线交于点,作,垂足为,交于点.
(1)求证:;
(2)若的半径,,求线段的长.
23. 如图1,在平面直角坐标系中,二次函数图象与y轴的交点坐标为,图象的顶点为M.矩形的顶点D与原点O重合,顶点A,C分别在x轴,y轴上,顶点B的坐标为.
(1)求c的值及顶点M的坐标,
(2)如图2,将矩形沿x轴正方向平移t个单位得到对应的矩形.已知边,分别与函数的图象交于点P,Q,连接,过点P作于点G.
①当时,求长;
②当点G与点Q不重合时,是否存在这样的t,使得的面积为1?若存在,求出此时t的值;若不存在,请说明理由.
24. 如图,是菱形的对角线.
(1)尺规作图:将绕点逆时针旋转得到,点旋转后的对应点为(保留作图痕迹,不写作法);
(2)在()所作的图中,连接,;
①求证:;
②若,求的值.
项目
测量古塔的高度及古塔底面圆的半径
测量工具
测角仪、皮尺等
测量
说明:点为古塔底面圆圆心,测角仪高度,在处分别测得古塔顶端的仰角为,测角仪所在位置与古塔底部边缘距离.点
在同一条直线上.
参考数据
项目任务
(1)
求出古塔的高度.
(2)
求出古塔底面圆的半径.
年级
平均数
中位数
众数
方差
七年级
84
90
八年级
84
87
2024年山东省临沂市罗庄区九年级中考一模数学试题(原卷版+解析版): 这是一份2024年山东省临沂市罗庄区九年级中考一模数学试题(原卷版+解析版),文件包含2024年山东省临沂市罗庄区九年级中考一模数学试题原卷版docx、2024年山东省临沂市罗庄区九年级中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
山东省临沂市罗庄区2023-2024学年七年级下学期期中考试数学试题(原卷版+解析版): 这是一份山东省临沂市罗庄区2023-2024学年七年级下学期期中考试数学试题(原卷版+解析版),文件包含山东省临沂市罗庄区2023-2024学年七年级下学期期中考试数学试题原卷版docx、山东省临沂市罗庄区2023-2024学年七年级下学期期中考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
山东省临沂市罗庄区2023-2024学年九年级下学期期中考试数学试题(原卷版+解析版): 这是一份山东省临沂市罗庄区2023-2024学年九年级下学期期中考试数学试题(原卷版+解析版),文件包含山东省临沂市罗庄区2023-2024学年九年级下学期期中考试数学试题原卷版docx、山东省临沂市罗庄区2023-2024学年九年级下学期期中考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。