终身会员
搜索
    上传资料 赚现金
    2024年中考数学二次函数压轴题专题13正方形存在性问题(学生版+解析)
    立即下载
    加入资料篮
    2024年中考数学二次函数压轴题专题13正方形存在性问题(学生版+解析)01
    2024年中考数学二次函数压轴题专题13正方形存在性问题(学生版+解析)02
    2024年中考数学二次函数压轴题专题13正方形存在性问题(学生版+解析)03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年中考数学二次函数压轴题专题13正方形存在性问题(学生版+解析)

    展开
    这是一份2024年中考数学二次函数压轴题专题13正方形存在性问题(学生版+解析),共24页。试卷主要包含了知识导航,典例精析,中考真题演练等内容,欢迎下载使用。

    作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:
    (1)有一个角为直角的菱形;
    (2)有一组邻边相等的矩形;
    (3)对角线互相垂直平分且相等的四边形.
    依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.
    从未知量的角度来说,正方形可以有4个“未知量”,因其点坐标满足4个等量关系,考虑对角线性质,互相平分(2个)垂直(1个)且相等(1个).
    比如在平面中若已知两个定点,可以在平面中确定另外两个点使得它们构成正方形,而如果要求在某条线上确定点,则可能会出现不存在的情况,即我们所说的未知量小于方程个数,可能无解.
    从动点角度来说,关于正方形存在性问题可分为:
    (1)2个定点+2个全动点;
    (2)1个定点+2个半动点+1个全动点;
    甚至可以有:(3)4个半动点.
    不管是哪一种类型,要明确的是一点,我们肯定不会列一个四元一次方程组求点坐标!
    常用处理方法:
    思路1:从判定出发
    若已知菱形,则加有一个角为直角或对角线相等;
    若已知矩形,则加有一组邻边相等或对角线互相垂直;
    若已知对角线互相垂直或平分或相等,则加上其他条件.
    思路2:构造三垂直全等
    若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.
    总结:构造三垂直全等的思路仅适合已知两定点的情形,若题目给了4个动点,则考虑从矩形的判定出发,观察该四边形是否已为某特殊四边形,考证还需满足的其他关系.
    正方形的存在性问题在中考中出现得并不多,正方形多以小题压轴为主.
    二、典例精析
    例:在平面直角坐标系中,A(1,1),B(4,3),在平面中求C、D使得以A、B、C、D为顶点的四边形是正方形.
    如图,一共6个这样的点C使得以A、B、C为顶点的三角形是等腰直角三角形.
    至于具体求点坐标,以为例,构造△AMB≌△,即可求得坐标.至于像、这两个点的坐标,不难发现,是或的中点,是或的中点.
    题无定法,具体问题还需具体分析,如上仅仅是大致思路.
    三、中考真题演练
    1.(2023·湖南·中考真题)我们约定:若关于x的二次函数与同时满足,则称函数与函数互为“美美与共”函数.根据该约定,解答下列问题:
    (1)若关于x的二次函数与互为“美美与共”函数,求k,m,n的值;
    (3)将抛物线的图象向右平移个单位长度得到抛物线,此抛物线的图象与轴交于,两点(点在点左侧).点是抛物线上的一个动点且在直线下方.已知点的横坐标为.过点作于点.求为何值时,有最大值,最大值是多少?
    4.(2023·湖南岳阳·中考真题)已知抛物线与轴交于两点,交轴于点.

    (1)请求出抛物线的表达式.
    (2)如图1,在轴上有一点,点在抛物线上,点为坐标平面内一点,是否存在点使得四边形为正方形?若存在,请求出点的坐标;若不存在,请说明理由.
    5.(2022·山东济宁·中考真题)已知抛物线与x轴有公共点.
    (1)当y随x的增大而增大时,求自变量x的取值范围;
    (2)将抛物线先向上平移4个单位长度,再向右平移n个单位长度得到抛物线(如图所示),抛物线与x轴交于点A,B(点A在点B的右侧),与y轴交于点C.当OC=OA时,求n的值;
    (3)D为抛物线的顶点,过点C作抛物线的对称轴l的垂线,垂足为G,交抛物线于点E,连接BE交l于点F.求证:四边形CDEF是正方形.
    6.(2022·山东泰安·中考真题)若二次函数的图象经过点,,其对称轴为直线,与x轴的另一交点为C.
    (1)求二次函数的表达式;
    (2)若点M在直线上,且在第四象限,过点M作轴于点N.
    ①若点N在线段上,且,求点M的坐标;
    ②以为对角线作正方形(点P在右侧),当点P在抛物线上时,求点M的坐标.
    7.(2023·辽宁葫芦岛·一模)如图,抛物线与x轴交于点A和点,与y轴交于点,点D是抛物线上一动点.

    (1)求抛物线的解析式;
    (2)如图1,当点D在直线上方时,作轴于点F,交直线于点E,当时,求点D的坐标;
    (3)点P在抛物线的对称轴l上,点Q是平面直角坐标系内一点,当四边形为正方形时,请直接写出点Q的坐标.
    专题13 正方形存在性问题
    一、知识导航
    作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:
    (1)有一个角为直角的菱形;
    (2)有一组邻边相等的矩形;
    (3)对角线互相垂直平分且相等的四边形.
    依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.
    从未知量的角度来说,正方形可以有4个“未知量”,因其点坐标满足4个等量关系,考虑对角线性质,互相平分(2个)垂直(1个)且相等(1个).
    比如在平面中若已知两个定点,可以在平面中确定另外两个点使得它们构成正方形,而如果要求在某条线上确定点,则可能会出现不存在的情况,即我们所说的未知量小于方程个数,可能无解.
    从动点角度来说,关于正方形存在性问题可分为:
    (1)2个定点+2个全动点;
    (2)1个定点+2个半动点+1个全动点;
    甚至可以有:(3)4个半动点.
    不管是哪一种类型,要明确的是一点,我们肯定不会列一个四元一次方程组求点坐标!
    常用处理方法:
    思路1:从判定出发
    若已知菱形,则加有一个角为直角或对角线相等;
    若已知矩形,则加有一组邻边相等或对角线互相垂直;
    若已知对角线互相垂直或平分或相等,则加上其他条件.
    思路2:构造三垂直全等
    若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.
    总结:构造三垂直全等的思路仅适合已知两定点的情形,若题目给了4个动点,则考虑从矩形的判定出发,观察该四边形是否已为某特殊四边形,考证还需满足的其他关系.
    正方形的存在性问题在中考中出现得并不多,正方形多以小题压轴为主.
    二、典例精析
    例:在平面直角坐标系中,A(1,1),B(4,3),在平面中求C、D使得以A、B、C、D为顶点的四边形是正方形.
    如图,一共6个这样的点C使得以A、B、C为顶点的三角形是等腰直角三角形.
    至于具体求点坐标,以为例,构造△AMB≌△,即可求得坐标.至于像、这两个点的坐标,不难发现,是或的中点,是或的中点.
    题无定法,具体问题还需具体分析,如上仅仅是大致思路.
    三、中考真题演练
    1.(2023·湖南·中考真题)我们约定:若关于x的二次函数与同时满足,则称函数与函数互为“美美与共”函数.根据该约定,解答下列问题:
    (1)若关于x的二次函数与互为“美美与共”函数,求k,m,n的值;
    (3)在同一平面直角坐标系中,若关于x的二次函数与它的“美美与共”函数的图像顶点分别为点A,点B,函数的图像与x轴交于不同两点C,D,函数的图像与x轴交于不同两点E,F.当时,以A,B,C,D为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.
    【详解】(1)解:由题意可知:,
    ∴.
    答:k的值为,m的值为3,n的值为2.
    (3)解:由题意可知,,
    ∴,
    ∴, ,
    ∵且,
    ∴;
    ①若,则,
    要使以A,B,C,D为顶点的四边形能构成正方形,
    则为等腰直角三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴;

    ②若,则A、B关于y轴对称,以A,B,C,D为顶点的四边形不能构成正方形,
    综上,以A,B,C,D为顶点的四边形能构成正方形,此时.
    【点睛】本题主要考查了二次函数的综合应用、正方形的性质等知识点,解题的关键是利用分类讨论的思想解决问题.
    2.(2023·辽宁·中考真题)如图,抛物线与轴交于点和点,与轴交于点,点在抛物线上.

    (1)求抛物线的解析式;
    (3)点在直线上,点在平面内,当四边形是正方形时,请直接写出点的坐标.
    分析:(3)先求得直线的解析式为,分别过点M、E作y的垂线,垂足分别为P、Q,证明,推出,,设,则,由点M在直线上,列式计算,可求得m的值,利用平移的性质可得点N的坐标;设点,则点,当绕着点O逆时针旋转得到时,当点M绕点O逆时针得到点E时,根据旋转的性质,可得点N的坐标.
    【详解】(1)解:∵抛物线经过点和,
    ∴,
    解得,
    ∴抛物线的解析式为;
    (3)解:令,则,
    解得或,
    ∴,
    同理,直线的解析式为,
    ∵四边形是正方形,
    ∴,,分别过点M、E作y的垂线,垂足分别为P、Q,如图,

    ,,
    ∴,
    ∴,,
    设,
    ∴,,
    则,
    ∵点M在直线上,
    ∴,
    解得或,
    当时,,,
    即点M与点C重合,点E与点B重合时,四边形是正方形,此时;
    当时,,,
    点O向左平移个单位,再向下平移1个单位,得到点M,
    则点E向左平移个单位,再向下平移1个单位,得到点N,
    ∴,即;
    设点,则点,
    当绕着点O逆时针旋转得到时,如图,
    ∵点E在的图象上,
    ∴,
    ∴点,
    ∵点E在的图象上,
    ∴,
    解得:或0,
    ∴,,
    当点M绕点O逆时针得到点E时,点,,
    ∵点E在的图象上,
    ∴,
    解得:,
    ∴点,,,,
    ∴点N的坐标为或;
    综上,点的坐标为或或或.
    【点睛】本题考查的是待定系数法求二次函数解析式,二次函数图象上点的坐标特征,待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间的距离公式和正方形的性质,是一道综合性较强的题,解题的关键是求出二次函数和一次函数解析式以及分情况讨论.
    3.(2023·黑龙江绥化·中考真题)如图,抛物线的图象经过,,三点,且一次函数的图象经过点.

    (1)求抛物线和一次函数的解析式.
    (2)点,为平面内两点,若以、、、为顶点的四边形是正方形,且点在点的左侧.这样的,两点是否存在?如果存在,请直接写出所有满足条件的点的坐标:如果不存在,请说明理由.
    (3)将抛物线的图象向右平移个单位长度得到抛物线,此抛物线的图象与轴交于,两点(点在点左侧).点是抛物线上的一个动点且在直线下方.已知点的横坐标为.过点作于点.求为何值时,有最大值,最大值是多少?
    【分析】(1)待定系数法求解析式即可求解;
    (2)①当为正方形的边长时,分别过点点作,,使,,连接、,证明,得出,,则同理可得,;②以为正方形的对角线时,过的中点作,使与互相平分且相等,则四边形为正方形,过点作轴于点,过点作于点,证明,得出,在中,,解得或4,进而即可求解;
    【详解】(1)解:把,,代入

    解得

    把代入得

    (2)满足条件的、两点存在,,,
    解:①当为正方形的边长时,分别过点点作,,使,,连接、.

    过点作轴于.
    ∵,
    又,
    ∴,
    ∴,

    同理可得,
    ②以为正方形的对角线时,过的中点作,使与互相平分且相等,则四边形为正方形,
    过点作轴于点,过点作于点

    ∵,


    ∴,



    在中,

    解得或4
    当时,,此时点在点右侧故舍去;
    当时,.
    综上所述:,,
    4.(2023·湖南岳阳·中考真题)已知抛物线与轴交于两点,交轴于点.

    (1)请求出抛物线的表达式.
    (2)如图1,在轴上有一点,点在抛物线上,点为坐标平面内一点,是否存在点使得四边形为正方形?若存在,请求出点的坐标;若不存在,请说明理由.
    【分析】(1)把代入,求出即可;
    (2)假设存在这样的正方形,过点E作于点R,过点F作轴于点I,证明可得故可得,;
    【详解】(1)∵抛物线与轴交于两点,交轴于点,
    ∴把代入,得,
    解得,
    ∴解析式为:;
    (2)假设存在这样的正方形,如图,过点E作于点R,过点F作轴于点I,


    ∵四边形是正方形,









    ∴;
    同理可证明:


    ∴;
    【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,全等三角形的判定与性质,正方形的性质等知识,运用数形结合思想解决问题是解题的关键.
    5.(2022·山东济宁·中考真题)已知抛物线与x轴有公共点.
    (1)当y随x的增大而增大时,求自变量x的取值范围;
    (2)将抛物线先向上平移4个单位长度,再向右平移n个单位长度得到抛物线(如图所示),抛物线与x轴交于点A,B(点A在点B的右侧),与y轴交于点C.当OC=OA时,求n的值;
    (3)D为抛物线的顶点,过点C作抛物线的对称轴l的垂线,垂足为G,交抛物线于点E,连接BE交l于点F.求证:四边形CDEF是正方形.
    【答案】(1)
    (2)n=2
    (3)见解析
    【分析】(1)根据抛物线与轴由公共点,可得,从而而求出的值,进而求得抛物线对称轴,进一步得到结果;
    (2)根据图像平移的特征可求出平移后抛物线的解析式,根据和分别得出点和的坐标,根据列出方程,进而求的结果;
    (3)从而得出点、点的坐标,由抛物线的解析式可得出点的坐标和点的坐标,进而求得的解析式,从而得出点的坐标,进而得出,进一步得出结论.
    【详解】(1)解:∵抛物线与x轴有公共点,

    ∴∴.
    ∴,
    ∴,
    ∵,
    ∴当时,y随着x的增大而增大.
    (2)解:由题意,得,
    当y=0时,,
    解得:或,
    ∵点A在点B的右侧,
    ∴点A的坐标为(1+n,0),点B的坐标为(-3+n,0).
    ∵点C的坐标为(0,-n2 +2n+3),
    ∴n+1=-n2+2n+3.
    解得:n=2或n=-1(舍去).
    故n的值为2.
    (3)解:由(2)可知:抛物线C2的解析式为y=-(x-1)2+4.
    ∴点A的坐标为(3,0),点B的坐标为(-1,0)
    点C的坐标为(0,3),点D的坐标为(1,4),
    抛物线C2的对称轴是直线x=1,
    ∵点E与点C关于直线x=1对称,
    ∴点E的坐标为(2,3).
    ∴点G的坐标为(1,3).
    设直线BE解析式为y=kx+b,

    解得:
    ∴y=x+1.
    当x=1时,y=1+1=2.点F的坐标为(1,2).
    ∴FG=EG=DG=CG=1.
    ∴四边形CDEF为矩形.
    又∵CE⊥DF,
    ∴四边形CDEF为正方形.
    【点睛】本题主要考查二次函数的图像与性质,求一次函数的解析式,平移图像的特征,正方形的判定,解决问题的关键是平移前后抛物线解析式之间的关系.
    6.(2022·山东泰安·中考真题)若二次函数的图象经过点,,其对称轴为直线,与x轴的另一交点为C.
    (1)求二次函数的表达式;
    (2)若点M在直线上,且在第四象限,过点M作轴于点N.
    ①若点N在线段上,且,求点M的坐标;
    ②以为对角线作正方形(点P在右侧),当点P在抛物线上时,求点M的坐标.
    【答案】(1)
    (2)①;②
    【分析】(1)利用待定系数解答,即可求解;
    (2)①先求出直线的表达式为,然后设点N的坐标为.可得.可得到,.再由,即可求解;②连接与交与点E.设点M的坐标为,则点N的坐标为
    根据正方形的性质可得E的坐标为,进而得到P的坐标.再由点P在抛物线上,即可求解.
    【详解】(1)解:二次函数的图象经过点,

    又抛物线经过点,对称轴为直线,
    解得∶
    抛物线的表达式为.
    (2)解∶①设直线的表达式为.
    点A,B的坐标为,,
    ∴, 解得∶ ,
    直线的表达式为.
    根据题意得∶点C与点关于对称轴直线对称,

    设点N的坐标为.
    轴,




    解,得.
    点M的坐标;
    ②连接与交与点E.
    设点M的坐标为,则点N的坐标为
    四边形是正方形,
    ,,.
    ∵MN⊥x轴,
    轴.
    E的坐标为.


    ∴P的坐标.
    点P在抛物线上,

    解,得,.
    点P在第四象限,
    舍去.
    即.
    点M坐标为.
    【点睛】本题主要考查了二次函数的综合题,熟练掌握二次函数的图形和性质,正方形的性质,一次函数的图象和性质是解题的关键.
    7.(2023·辽宁葫芦岛·一模)如图,抛物线与x轴交于点A和点,与y轴交于点,点D是抛物线上一动点.

    (1)求抛物线的解析式;
    (2)如图1,当点D在直线上方时,作轴于点F,交直线于点E,当时,求点D的坐标;
    (3)点P在抛物线的对称轴l上,点Q是平面直角坐标系内一点,当四边形为正方形时,请直接写出点Q的坐标.
    【答案】(1)
    (2)
    (3),,,
    【分析】(1)将B,C两点坐标代入抛物线解析式,利用待定系数法求解即可;
    (2)根据题意可求出直线的解析式,由可证明,作于H,则,设点D的横坐标为t,分别表达和,建立方程即可得出结论;
    (3)若四边形为正方形,则是等腰直角三角形,且,根据题意画出对应图形,利用全等三角形建立方程,即可得出结论.
    【详解】(1)经过点,点

    解得
    抛物线的函数解析式为:
    (2)轴,
    轴,




    设直线的解析式为,
    将,代入得其解析式得,

    ∴,
    解得或,
    当时,点D与点A重合,如图3,,则或,则;
    当时,则;

    如图4,过点D作于点M,设直线l与x轴交于点N,
    同理可证,,
    ∴,
    ∴,
    ∴,
    解得或,
    当时,点D与点A重合,同上;
    当时,,则;

    综上,点Q的坐标为:或或或
    【点睛】本题属于二次函数综合题,涉及待定系数法,等腰三角形的性质与判定,正方形的性质与判定等相关知识,解题关键是利用转化思想对已知信息进行转化,将转化为,将正方形的存在性转化为等腰直角三角形的存在性.
    相关试卷

    2024年中考数学二次函数压轴题专题14等角存在性问题(学生版+解析): 这是一份2024年中考数学二次函数压轴题专题14等角存在性问题(学生版+解析),共35页。试卷主要包含了知识导航,典例精析,中考真题演练等内容,欢迎下载使用。

    2024年中考数学二次函数压轴题专题12菱形的存在性问题(学生版+解析): 这是一份2024年中考数学二次函数压轴题专题12菱形的存在性问题(学生版+解析),共33页。试卷主要包含了知识导航,典例精析,中考真题演练等内容,欢迎下载使用。

    2024年中考数学二次函数压轴题专题11矩形的存在性问题(学生版+解析): 这是一份2024年中考数学二次函数压轴题专题11矩形的存在性问题(学生版+解析),共33页。试卷主要包含了知识导航,典例精析,中考真题演练等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年中考数学二次函数压轴题专题13正方形存在性问题(学生版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map