资料中包含下列文件,点击文件名可预览资料内容
还剩4页未读,
继续阅读
重庆市永川中学校2023-2024学年高一下学期6月月考数学试题
展开这是一份重庆市永川中学校2023-2024学年高一下学期6月月考数学试题,文件包含重庆市永川中学高2026届高一下期6月月考数学参考答案docx、重庆市永川中学高2026届高一下期6月月考数学试题卷docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
一、 单选题(本大题共8小题,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。)
1.复数z=i(3+i)在复平面内对应的点所在的象限为( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
2. 已知向量,,.若,则( )
A. B. 0C. D. 8
3“设、是不同的两条直线,、是不同的两个平面,下列说法正确的有( )
A. ,,则 B. ,,,则
C. 且则 D 则
4直三棱柱中,若,,则异面直线与所成的角等于( )
A. 30°B. 45°C. 60°D. 90°
5. 已知四边形是矩形,,,则( )
A. B. -7C. D. -25
6 某居民小区户主人数和户主对住房户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用比例分配的分层随机抽样方法抽取的户主作为样本进行调查,则样本容量和抽取的户主对四居室满意的人数分别为( )
A. 400,32B. 400,36C. 480,32D. 480,36
7. 已知圆台上、下底面半径分别为1,2,侧面积为,则这个圆台的体积为( )
A. B. C. D.
8 . 在中,角A,B,C的对边分别为a,b,c.已知,,,点O是的外心,若,则( )
A. B. C. D.
二、多选题(本大题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项是符合题目要求的,全部选对得6分,部分选对得部分分,选错或不选得0分。)
9. 已知平面向量,,则下列说法正确的有( )
A. B.
C. 向量在上的投影向量为 D. 向量与的夹角为
10. 在中,内角,,所对的边分别为,,,已知,,且,则有( )
A. B. C. D.
11如图,直四棱柱的底面是梯形,,,,,P是棱的中点.Q是棱上一动点(不包含端点),则( )
与平面BPQ有可能平行
B. 与平面BPQ有可能平行
C. 三角形BPQ周长的最小值为
D. 三棱锥的体积为定值
三、填空题(本大题共4小题,每小题5分,共20分. 把答案填写在答题卡相应位置上.)
12. 一组数据按从小到大的顺序排列为1,2,2,,5,10,其中,已知该组数据的中位数是众数的倍,则该组数据的标准差为___________.
13 已知的内角所对的边分别,角.若AM是的平分线,交BC于M,且,则的最小值为______________.
14. 在三棱锥中,底面为边长为3的正三角形,侧棱底面,若三棱锥的外接球的体积为,则该三棱锥的体积为__________.
四、解答题(本大题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.)
15 .在中,角A,B,C的对边分别为a,b,c.已知.
(1)求角B的大小;
(2)若,的面积为,求的周长.
16.2022年4月16日,神舟13号载人飞船返回舱在东风着陆场成功着陆,这趟神奇之旅意义非凡,尤其是“天宫课堂”在广大学生心中引起强烈反响,激起了他们对太空知识的浓厚兴趣.某中学在进行太空知识讲座后,从全校学生中随机抽取了200名学生进行笔试(试卷满分100分),并记录下他们的成绩,将数据分成5组:,并整理得到如下频率分布直方图.
(1)求这部分学生成绩的中位数、平均数(同组数据用该组区间的中点值作代表);
(2)为了更好的了解学生对太空知识的掌握情况,学校决定在成绩高的第4、5组中用分层抽样的方法抽取6名学生,进行第二轮面试,最终从这6名学生中随机抽取2人参加市太空知识竞赛,求90分(包括90分)以上的同学恰有1人被抽到的概率.
17. 已知四棱锥满足:四边形ABCD为正方形,△PAD为等边三角形,且平面PAD⊥平面ABCD,,E为PA的中点.
(1)证明:平面BDE;
(2)求直线PC和平面ABCD所成角的正切值.
18. 如图,在四棱锥 QUOTE PABCD PABCD中, QUOTE PA⊥ PA⊥平面 QUOTE ABCD ABCD,四边形 QUOTE ABCD ABCD为菱形, QUOTE ∠ADC=60° ∠ADC=60°, QUOTE PA=AD=4 PA=AD=4, QUOTE E E为 QUOTE AD AD的中点.
(1)求证:平面 QUOTE PCE⊥ PCE⊥平面 QUOTE PAD PAD;
(2)求二面角 QUOTE A-PD-C A-PD-C的平面角的正弦值.
19 . 由于某地连晴高温,森林防灭火形势严峻,某部门安排了甲、乙两名森林防火护林员对该区域开展巡查.现甲、乙两名森林防火护林员同时从A地出发,乙沿着正西方向巡视走了3km后到达D点,甲向正南方向巡视若干公里后到达B点,又沿着南偏西60°的方向巡视走到了C点,经过测量发现.设,如图所示.
(1)设甲护林员巡视走过的路程为,请用表示S,并求S的最大值;
(2)为了强化应急应战准备工作,有关部门决定在区域范围内储备应急物资,求区域面积的最大值.
相关试卷
2023-2024学年重庆市永川中学校高一上学期10月月考数学试题含答案:
这是一份2023-2024学年重庆市永川中学校高一上学期10月月考数学试题含答案,共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
34,重庆市永川中学校2023-2024学年高一上学期10月月考数学试题:
这是一份34,重庆市永川中学校2023-2024学年高一上学期10月月考数学试题,共2页。
重庆市永川中学校2023-2024学年高一上学期10月月考数学试题:
这是一份重庆市永川中学校2023-2024学年高一上学期10月月考数学试题,共8页。试卷主要包含了已知命题,则为,若,则的值是,设,且,则,设集合或,若,则的取值范围是,设函数为一次函数,且,则,下列各组中表示不同集合的是等内容,欢迎下载使用。