模拟测试卷04(新高考冲刺卷02)(原卷版)-冲刺2024年高考数学考点押题模拟预测卷(新高考专用)
展开一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.复数与下列复数相等的是( )
A.B.
C.D.
2.已知集合,,且全集,则( )
A.B.C.D.
3. 在直角三角形ABC中,,若,则( )
A.-18B.-6
C.18D.6
4.已知,则的值为( )
A.B.C.D.
5.中心极限定理是概率论中的一个重要结论.根据该定理,若随机变量,则当且时,可以由服从正态分布的随机变量近似替代,且的期望与方差分别与的均值与方差近似相等.现投掷一枚质地均匀分布的骰子2500次,利用正态分布估算骰子向上的点数为偶数的次数少于1300的概率为( )
附:若:,则,,.
A.0.0027B.0.5C.0.8414D.0.9773
6.已知圆的面积被直线平分,圆,则圆与圆的位置关系是( )
A.外离B.相交C.内切D.外切
7.已知数列的各项均为正数,记,,,,设甲:是公比为的等比数列;乙:对任意,,,三个数是公比为的等比数列,则( )
A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件
C.甲是乙的充要条件D.甲是乙的既不充分又不必要条件
8.已知函数,满足,,若恰有个零点,则这个零点之和为( )
A.B.C.D.
二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.下列结论正确的是( )
A.一组样本数据的散点图中,若所有样本点都在直线上,则这组样本数据的样本相关系数为
B.已知随机变量,若,则
C.在列联表中,若每个数据均变成原来的2倍,则也变成原来的2倍(,其中)
D.分别抛掷2枚质地均匀的骰子,若事件“第一枚骰子正面向上的点数是奇数”,“2枚骰子正面向上的点数相同”,则互为独立事件
10.已知函数,下列结论正确的是( )
A.若函数无极值点,则没有零点
B.若函数无零点,则没有极值点
C.若函数恰有一个零点,则可能恰有一个极值点
D.若函数有两个零点,则一定有两个极值点
11.已知抛物线E:的焦点为F,点F与点C关于原点对称,过点C的直线l与抛物线E交于A,B两点(点A和点C在点B的两侧),则下列命题正确的是( )
A.若BF为的中线,则
B.若BF为的角平分线,则
C.存在直线l,使得
D.对于任意直线l,都有
三、填空题:本题共3小题,每小题5分,共15分.
12.已知空间中三点,则点A到直线的距离为 .
13.已知函数在上恰好有三个零点,请写出符合条件的一个的值: .
14.为美化环境,某地决定在一个大型广场建一个同心圆形花坛,花坛分为两部分,中间小圆部分种植草坪,周围的圆环分为等份种植红、黄、蓝三色不同的花.要求相邻两部分种植不同颜色的花.如图①,圆环分成的等份分别为,,,有种不同的种植方法.
(1)如图②,圆环分成的4等份分别为 ,,,,有 种不同的种植方法;
(2)如图③,圆环分成的等份分别为,,,, 有 种不同的种植方法.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.的内角的对边分别为,已知.
(1)求角的值;
(2)若的面积为,求.
16.如图,已知正三棱柱分别为棱的中点.
(1)求证:平面;
(2)求二面角的正弦值.
17.软笔书法又称中国书法,是我国的国粹之一,琴棋书画中的“书”指的正是书法.作为我国的独有艺术,软笔书法不仅能够陶冶情操,培养孩子对艺术的审美还能开发孩子的智力,拓展孩子的思维与手的灵活性,对孩子的身心健康发展起着重要的作用.近年来越来越多的家长开始注重孩子的书法教育.某书法培训机构统计了该机构学习软笔书法的学生人数(每人只学习一种书体),得到相关数据统计表如下:
(1)该培训机构统计了某周学生软笔书法作业完成情况,得到下表,其中.
若根据小概率值的独立性检验可以认为该周学生是否认真完成作业与性别有关,求该培训机构学习软笔书法的女生的人数.
(2)现从学习楷书与行书的学生中用分层随机抽样的方法抽取10人,再从这10人中随机抽取4人,记4人中学习行书的人数为,求的分布列及数学期望.
参考公式及数据:.
18.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心的轨迹为曲线K,P是曲线K上一点.
(1)求曲线K的方程;
(2)过点A且斜率为k的直线l与曲线K交于B、C两点,若且直线OP与直线交于Q点.求的值;
(3)若点D、E在y轴上,的内切圆的方程为,求面积的最小值.
19.给出下列两个定义:
I.对于函数,定义域为,且其在上是可导的,若其导函数定义域也为,则称该函数是“同定义函数”.
II.对于一个“同定义函数”,若有以下性质:
①;②,其中为两个新的函数,是的导函数.
我们将具有其中一个性质的函数称之为“单向导函数”,将两个性质都具有的函数称之为“双向导函数”,将称之为“自导函数”.
(1)判断函数和是“单向导函数”,或者“双向导函数”,说明理由.如果具有性质①,则写出其对应的“自导函数”;
(2)已知命题是“双向导函数”且其“自导函数”为常值函数,命题.判断命题是的什么条件,证明你的结论;
(3)已知函数.
①若的“自导函数”是,试求的取值范围;
②若,且定义,若对任意,不等式恒成立,求的取值范围.
书体
楷书
行书
草书
隶书
篆书
人数
24
16
10
20
10
认真完成
不认真完成
总计
男生
女生
总计
60
0.10
0.05
0.01
2.706
3.841
6.635
押题04 第18题 圆锥曲线(九大题型)(原卷版)-冲刺2024年高考数学考点押题模拟预测卷(新高考专用): 这是一份押题04 第18题 圆锥曲线(九大题型)(原卷版)-冲刺2024年高考数学考点押题模拟预测卷(新高考专用),共8页。试卷主要包含了已知O为坐标原点,点W为,已知离心率为的双曲线等内容,欢迎下载使用。
冲刺2023年高考数学考点押题模拟预测卷05(新高考全国Ⅰ卷)(原卷版): 这是一份冲刺2023年高考数学考点押题模拟预测卷05(新高考全国Ⅰ卷)(原卷版),共7页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
冲刺2023年高考数学考点押题模拟预测卷02(新高考全国Ⅰ卷)(原卷版): 这是一份冲刺2023年高考数学考点押题模拟预测卷02(新高考全国Ⅰ卷)(原卷版),共6页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。