2024成都中考数学二轮复习专题:费马点中的对称模型与最值问题
展开【精典例题】
1、如图,在△ABC中,∠ACB=90°,AB=AC=1,P是△ABC内一点,求PA+PB+PC的最小值.
【分析】如图,以AD为边构造等边△ACD,连接BD,BD的长即为PA+PB+PC的最小值.至于点P的位置?这不重要!
如何求BD?考虑到△ABC和△ACD都是特殊的三角形,过点D作DH⊥BA交BA的延长线于H点,根据勾股定理,即可得出结果.
2、如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为______.
【分析】依然构造60°旋转,将三条折线段转化为一条直线段.
分别以AD、AM为边构造等边△ADF、等边△AMG,连接FG,
易证△AMD≌△AGF,∴MD=GF
∴ME+MA+MD=ME+EG+GF
过F作FH⊥BC交BC于H点,线段FH的长即为所求的最小值.
3、如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为___________.
【答案】3
【详解】
如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.
∵点P关于OA的对称点为C,
∴PM=CM,OP=OC,∠COA=∠POA;
∵点P关于OB的对称点为D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等边三角形,
∴CD=OC=OD=3.
∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3.
4、如图,点都在双曲线上,点,分别是轴,轴上的动点,则四边形周长的最小值为( )
A.B.C.D.
【答案】B
【解析】
试题解析:分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,
则点A的坐标为(1,3)、B点坐标为(3,1),
作A点关于y轴的对称点P,B点关于x轴的对称点Q,
所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),
连结PQ分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,
四边形ABCD周长=DA+DC+CB+AB
=DP+DC+CQ+AB
=PQ+AB
=
=4+2
=6,
故选B.
5、如图所示,,点为内一点,,点分别在上,求周长的最小值.
【答案】周长的最小值为8
【详解】
如图,作P关于OA、OB的对称点,连结、,交OA、OB于M、N,此时周长最小,根据轴对称性质可知,,,且,,,,为等边三角形,即周长的最小值为8.
6、如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.
(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;
(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
【答案】(1)y=x+.(2)3,(3)点Q的坐标为(3,),Q′(3,)或(3,2)或(3,﹣).
【详解】
试题解析:(1)∵y=x2﹣x﹣,
∴y=(x+1)(x﹣3).
∴A(﹣1,0),B(3,0).
当x=4时,y=.
∴E(4,).
设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:
,
解得:k=,b=.
∴直线AE的解析式为y=x+.
(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.
∴直线CE的解析式为y=x﹣.
过点P作PF∥y轴,交CE与点F.
设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),
则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.
∴△EPC的面积=×(x2+x)×4=﹣x2+x.
∴当x=2时,△EPC的面积最大.
∴P(2,﹣).
如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.
∵K是CB的中点,
∴k(,﹣).
∵点H与点K关于CP对称,
∴点H的坐标为(,﹣).
∵点G与点K关于CD对称,
∴点G(0,0).
∴KM+MN+NK=MH+MN+GN.
当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.
∴GH==3.
∴KM+MN+NK的最小值为3.
(3)如图3所示:
∵y′经过点D,y′的顶点为点F,
∴点F(3,﹣).
∵点G为CE的中点,
∴G(2,).
∴FG=.
∴当FG=FQ时,点Q(3,),Q′(3,).
当GF=GQ时,点F与点Q″关于y=对称,
∴点Q″(3,2).
当QG=QF时,设点Q1的坐标为(3,a).
由两点间的距离公式可知:a+=,解得:a=﹣.
∴点Q1的坐标为(3,﹣).
综上所述,点Q的坐标为(3,),Q′(3,)或(3,2)或(3,﹣).
7、已知,如图,二次函数图象的顶点为,与轴交于、两点(点在点右侧),点、关于直线:对称.
(1)求、两点的坐标,并证明点在直线上;
(2)求二次函数解析式;
(3)过点B作直线交直线于K点,M、N分别为直线AH和直线上的两个动点,连结HN、NM、MK,求HN+NM+MK的最小值.
【答案】
(1)点坐标为,点坐标为
(2)
(3)8
【详解】
(1)依题意,得ax2+2ax−3a=0(a≠0),
两边都除以a得:
即x2+2x−3=0,
解得x1=−3,x2=1,
∵B点在A点右侧,
∴A点坐标为(−3,0),B点坐标为(1,0),
答:A. B两点坐标分别是(−3,0),(1,0).
证明:
∵直线l:y=,
当x=−3时,y=,
∴点A在直线l上.
(2)∵点H、B关于过A点的直线l:y=对称,
∴AH=AB=4,
过顶点H作HC⊥AB交AB于C点,
则AC=,
∴顶点H,
代入二次函数解析式,解得a=,
∴二次函数解析式为,
答:二次函数解析式为.
(3)直线AH的解析式为,
直线BK的解析式为,
由
解得,
即K(3,2),
则BK=4,
∵点H、B关于直线AK对称,K(3,2),
∴HN+MN的最小值是MB,
过K作KD⊥x轴于D,作点K关于直线AH的对称点Q,连接QK,交直线AH于E,
则QM=MK,QE=EK=2,AE⊥QK,
∴根据两点之间线段最短得出BM+MK的最小值是BQ,即BQ的长是HN+NM+MK的最小值,
∵BK∥AH,
∴∠BKQ=∠HEQ=90∘,
由勾股定理得QB=
∴HN+NM+MK的最小值为8,
答:HN+NM+MK和的最小值是8.
利用轴对称的性质,把三线段问题通过做对称转化为两点之间线段最短的问题进而解题。
中考数学 专题17 费马点中的对称模型与最值问题(专题练习): 这是一份中考数学 专题17 费马点中的对称模型与最值问题(专题练习),文件包含中考数学专题17费马点中的对称模型与最值问题教师版专题练习docx、中考数学专题17费马点中的对称模型与最值问题学生版专题练习docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
中考数学 专题16 费马点中三线段模型与最值问题(专题练习): 这是一份中考数学 专题16 费马点中三线段模型与最值问题(专题练习),文件包含中考数学专题16费马点中三线段模型与最值问题教师版专题练习docx、中考数学专题16费马点中三线段模型与最值问题学生版专题练习docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
专题68 费马点中的对称模型与最值问题-中考数学重难点专项突破(全国通用): 这是一份专题68 费马点中的对称模型与最值问题-中考数学重难点专项突破(全国通用),文件包含专题68费马点中的对称模型与最值问题原卷版docx、专题68费马点中的对称模型与最值问题解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。