2024成都中考数学二轮复习专题:费马点中三线段模型与最值问题
展开
这是一份2024成都中考数学二轮复习专题:费马点中三线段模型与最值问题,共12页。
【模型展示】
问题:在△ABC内找一点P,使得PA+PB+PC最小.
【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.
(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.
(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.
(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)
(4)以BC为边作等边△BCF,连接AF,必过点P,有∠PAB=∠BPC=∠CPA=120°.
在图三的模型里有结论:(1)∠BPD=60°;(2)连接AP,AP平分∠DPE.
有这两个结论便足以说明∠PAB=∠BPC=∠CPA=120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!
【精典例题】
1、如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长( )
A.B.C.D.
【答案】D
【详解】
解:如图,
∵将△ABG绕点B逆时针旋转60°得到△EBF,
∴BE=AB=BC,BF=BG,EF=AG,
∴△BFG是等边三角形.
∴BF=BG=FG,.
∴AG+BG+CG=FE+GF+CG.
根据“两点之间线段最短”,
∴当G点位于BD与CE的交点处时,AG+BG+CG的值最小,即等于EC的长,
过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=180°-120°=60°,
∵BC=4,
∴BF=2,EF=2,在Rt△EFC中,
∵EF2+FC2=EC2,
∴EC=4.
∵∠CBE=120°,
∴∠BEF=30°,
∵∠EBF=∠ABG=30°,
∴EF=BF=FG,
∴EF=CE=,
故选:D.
2、如图,将绕点逆时针旋转60°得到,与交于点,可推出结论:
问题解决:如图,在中,,,.点是内一点,则点到三个顶点的距离和的最小值是___________
【答案】
【详解】
如图,将△MOG绕点M逆时针旋转60°,得到△MPQ,
显然△MOP为等边三角形,
∴,OM+OG=OP+PQ,
∴点O到三顶点的距离为:ON+OM+OG=ON+OP+PQ,
∴当点N、O、P、Q在同一条直线上时,有ON+OM+OG最小,
此时,∠NMQ=75°+60°=135°,
过Q作QA⊥NM交NM的延长线于A,则∠MAQ=90°,
∴∠AMQ=180°-∠NMQ=45°,
∵MQ=MG=4,
∴AQ=AM=MQ•cs45°=4,
∴NQ=,
故答案为:.
3、如图,四边形 是菱形,B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.
【答案】
【详解】
将△BMN绕点B顺时针旋转60度得到△BNE,∵BM=BN,∠MBN=∠CBE=60°,∴MN=BM ∵MC=NE∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.
∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,∴BH=AB=3,AH=BH=,∴AE=2AH=.
故答案为.
4、如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=_____.
【答案】
【详解】
如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM.
∵AB=AC,AH⊥BC,
∴∠BAP=∠CAP,
∵PA=PA,
∴△BAP≌△CAP(SAS),
∴PC=PB,
∵MG=PB,AG=AP,∠GAP=60°,
∴△GAP是等边三角形,
∴PA=PG,
∴PA+PB+PC=CP+PG+GM,
∴当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,
∵AP+BP+CP的最小值为2,
∴CM=2,
∵∠BAM=60°,∠BAC=30°,
∴∠MAC=90°,
∴AM=AC=2,
作BN⊥AC于N.则BN=AB=1,AN=,CN=2-,
∴BC=.
故答案为.
5、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
E
A D
B C
N
M
⑴ 求证:△AMB≌△ENB;
⑵ ①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
⑶ 当AM+BM+CM的最小值为时,求正方形的边长.
【答案】
(1)△AMB≌△ENB,证明略。
(2)①当M点落在BD的中点时,AM+CM的值最小.
②连接CE,当M点位于BD与CE的交点处时,
AM+BM+CM的值最小,图略
(3)
【解析】(满分13分)解:⑴∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠BMA=∠NBE.
又∵MB=NB,
∴△AMB≌△ENB(SAS). ………………5分
⑵①当M点落在BD的中点时,AM+CM的值最小. ………………7分
②如图,连接CE,当M点位于BD与CE的交点处时,
F
E
A D
B C
N
M
AM+BM+CM的值最小. ………………9分
理由如下:连接MN.由⑴知,△AMB≌△ENB,
∴AM=EN.
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM. ………………10分
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.……11分
⑶过E点作EF⊥BC交CB的延长线于F,
∴∠EBF=90°-60°=30°.
设正方形的边长为x,则BF=x,EF=.
在Rt△EFC中,
∵EF2+FC2=EC2,
∴()2+(x+x)2=. ………………12分
解得,x=(舍去负值).
∴正方形的边长为. ………………13分
6、在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB=;
(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF;
①把图形补充完整(无需写画法); ②求的取值范围;
(2)如图2,求BE+AE+DE的最小值.
【答案】(1)①补图见解析;②;(2)
【详解】
(1)①如图△DCF即为所求;
②∵四边形ABCD是正方形,
∴BC=AB=2,∠B=90°,∠DAE=∠ADC=45°,
∴AC==AB=4,
∵△ADE绕点D逆时针旋转90°得到△DCF,
∴∠DCF=∠DAE=45°,AE=CF,
∴∠ECF=∠ACD+∠DCF=90°,
设AE=CF=x,EF2=y,则EC=4−x,
∴y=(4−x)2+x2=2x2−8x+160(0<x≤4).
即y=2(x−2)2+8,
∵2>0,
∴x=2时,y有最小值,最小值为8,
当x=4时,y最大值=16,
∴8≤EF2≤16.
(2)如图中,将△ABE绕点A顺时针旋转60°得到△AFG,连接EG,DF.作FH⊥AD于H.
由旋转的性质可知,△AEG是等边三角形,
∴AE=EG,
∵DF≤FG+EG+DE,BE=FG,
∴AE+BE+DE的最小值为线段DF的长.
在Rt△AFH中,∠FAH=30°,AB==AF,
∴FH=AF=,AH==,
在Rt△DFH中,DF==,
∴BE+AE+ED的最小值为.
费马点”是指位于三角形内且到三角形三个顶点距高之和最短的点。
主要分为两种情况:
(1)当三角形三个内角都小于120°的三角形,通常将某三角形绕点旋转60度,从而将“不等三爪图”中三条线段转化在同一条直线上,利用两点之间线段最短解决问题。
(2)当三角形有一个内角大于120°时,费马点就是此内角的顶点.
费马点问题解题的核心技巧:
旋转60° 构造等边三角形 将“不等三爪图”中三条线段转化至同一直线上 利用两点之间线段最短求解问题
相关试卷
这是一份中考数学 专题17 费马点中的对称模型与最值问题(专题练习),文件包含中考数学专题17费马点中的对称模型与最值问题教师版专题练习docx、中考数学专题17费马点中的对称模型与最值问题学生版专题练习docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份中考数学 专题16 费马点中三线段模型与最值问题(专题练习),文件包含中考数学专题16费马点中三线段模型与最值问题教师版专题练习docx、中考数学专题16费马点中三线段模型与最值问题学生版专题练习docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份专题67 费马点中三线段模型与最值问题-中考数学重难点专项突破(全国通用),文件包含专题67费马点中三线段模型与最值问题原卷版docx、专题67费马点中三线段模型与最值问题解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。