所属成套资源:【期末试卷】人教版八年级下学期数学期末试卷汇集
- 人教版8年级下学期数学期末测试卷01 试卷 2 次下载
- 人教版8年级下学期数学期末测试卷02 试卷 1 次下载
- 人教版8年级下学期数学期末测试卷04 试卷 1 次下载
- 人教版8年级下学期数学期末综合检测(含答案详解) 试卷 3 次下载
- 人教版8年级下学期数学期末测试卷01(A卷) 试卷 4 次下载
人教版8年级下学期数学期末测试卷03
展开
这是一份人教版8年级下学期数学期末测试卷03,共8页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性,下列计算正确的是等内容,欢迎下载使用。
1.高度抽象性:数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来并借助于抽象发展的。
2.严密逻辑性: 数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。任何一门科学,都要应用逻辑工具,都有它严谨的一面。
3.广泛应用性:数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。各门科学的“数学化”,是现代科学发展的一大趋势。
《八年下数学期末》期末检测题(三)
(时间:120分钟 满分:120分)
一、选择题(每小题3分,共30分)
1.(2016·临夏州)下列根式中是最简二次根式的是( B )
A.eq \r(\f(2,3)) B.eq \r(3) C.eq \r(9) D.eq \r(12)
2.下列各组数中,能构成直角三角形的是( B )
A.4,5,6 B.1,1,eq \r(2) C.6,8,11 D.5,12,23
3.(2016·黄冈)在函数y=eq \f(\r(x+4),x)中,自变量x的取值范围是( C )
A.x>0 B.x≥-4 C.x≥-4且x≠0 D.x>0且x≠-1
4.(2016·来宾)下列计算正确的是( B )
A.eq \r(5)-eq \r(3)=eq \r(2) B.3eq \r(5)×2eq \r(3)=6eq \r(15) C.(2eq \r(2))2=16 D.eq \f(3,\r(3))=1
5.(2016·眉山)随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级(5)班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( C )
A.20,20 B.30,20 C.30,30 D.20,30
,第5题图) ,第7题图)
6.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是( C )
7.如图,有一个由传感器A控制的灯,要装在门上方离地高4.5 m的墙上,任何东西只要移至该灯5 m及5 m以内时,灯就会自动发光.请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( A )
A.4米 B.3米 C.5米 D.7米
8.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,∠DHO=20°,则∠CAD的度数是( A )
A.20° B.25° C.30° D.40°
,第8题图) ,第9题图)
9.如图,平行四边形ABCD的周长是26 cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3 cm,则AE的长度为( B )
A.3 cm B.4 cm C.5 cm D.8 cm
10.甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计,两组各自加工零件的数量y(件)与时间x(小时)的函数图象如图,以下说法错误的是( D )
A.甲组加工零件数量y与时间x的关系式为y甲=40x
B.乙组加工零件总量m=280
C.经过2eq \f(1,2)小时恰好装满第1箱
D.经过4eq \f(3,4)小时恰好装满第2箱
二、填空题(每小题3分,共24分)
11.在数轴上表示实数a的点如图所示,化简eq \r((a-5)2)+|a-2|的结果为__3__.
12.(2016·烟台)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__eq \r(7)__.
,第12题图) ,第17题图) ,第18题图)
13.把直线y=x-1向下平移后过点(3,-2),则平移后所得直线的解析式为__y=x-5__.
14.某校八(3)班的四个小组中,每个小组同学的平均身高大致相同,若第一小组同学身高的方差为1.7,第二小组同学身高的方差为1.9,第三小组同学身高的方差为2.3,第四小组同学身高的方差为2.0,则在这四个小组中身高最整齐的是第__一__小组.
15.(2016·荆州)若点M(k-1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k-1)x+k的图象不经过第__一__象限.
16.如图,在矩形ABCD中,BC=20 cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3 cm/s和2 cm/s,则最快__4__s后,四边形ABPQ成为矩形.
17.如图,在△ABC中,∠ACB=90°,M,N分别是AB,AC的中点,延长BC至点D,使CD=eq \f(1,3)BD,连接DM,DN,MN.若AB=6,则DN=__3__.
18.(2016·玉林)如图,已知正方形ABCD边长为1,∠EAF=45°,AE=AF,则有下列结论:①∠1=∠2=22.5°;②点C到EF的距离是eq \r(2)-1;③△ECF的周长为2;④BE+DF>EF.其中正确的结论是__①②③__.(写出所有正确结论的序号)
三、解答题(共66分)
19.(6分)(2016·锦州)先化简,再求值:eq \f(x,x2-1)÷(1+eq \f(1,x-1)),其中x=eq \f(1,2)eq \r(32)-3eq \r(\f(1,2))-(π-3)0.
解:原式=eq \f(1,x+1),x=eq \f(\r(2),2)-1,代入得原式=eq \r(2)
20.(6分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图①中,画一个三角形,使它的三边长都是有理数;
(2)在图②中,画一个直角三角形,使它们的三边长都是无理数;
(3)在图③中,画一个正方形,使它的面积是10.
解:如图:
21.(6分)如图将一根15 cm长的细木棒放入长宽高分别为4 cm,3 cm和12 cm的长方体无盖盒子中,则细木棒露在外面的最短长度是多少?
解:由题意知盒子底面对角线长为eq \r(32+42)=5(cm),盒子的对角线长为eq \r(52+122)=13(cm),细木棒长15 cm,故细木棒露在盒外面的最短长度是15-13=2(cm)
22.(8分)某市为了了解高峰时段16路车从总站乘该路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:14,23,16,25,23,28,26,27,23,25.
(1)这组数据的众数为__23__,中位数为__24__;
(2)计算这10个班次乘车人数的平均数;
(3)如果16路车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少?
解:(2)平均数是23 (3)60×23=1380(人),估计在高峰时段从总站乘该路车出行的乘客共有1380人
23.(9分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为 A(-3,0),与y轴交点为B,且与正比例函数y=eq \f(4,3)x的图象交于点 C(m,4).
(1)求m的值及一次函数 y=kx+b的解析式;
(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.
解:(1)m=3,y=eq \f(2,3)x+2 (2)点P 的坐标为(0,6)或(0,-2)
24.(9分)(2016·梅州)如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E,F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.
(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.
解:(1)∵四边形ABCD是平行四边形,∴DC∥AB,∴∠OBE=∠ODF.又∵∠BOE=∠DOF,BE=DF,∴△OBE≌△ODF(AAS),∴BO=DO (2)∵EF⊥AB,AB∥DC,∴∠GEA=∠GFD=90°.∵∠A=45°,∴∠G=∠A=45°,∴AE=GE,∵BD⊥AD,∴∠ADB=∠GDO=90°,∴∠GOD=∠G=45°,∴DG=DO,∴OF=FG=1,由(1)可知,OE=OF=1,∴GE=OE+OF+FG=3,∴AE=3
25.(10分)(2016·十堰)如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.
(1)判断四边形CEGF的形状,并证明你的结论;
(2)若AB=3,BC=9,求线段CE的取值范围.
解:(1)四边形CEGF为菱形.证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后EC与GE,FC与FG完全重合,∴GE=EC,GF=FC,∴GF=GE=EC=FC,∴四边形CEGF为菱形 (2)当F与D重合时,CE取最小值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9-CE)2,∴CE=5,∴线段CE的取值范围3≤CE≤5
26.(12分)(2016·齐齐哈尔)有一科技小组进行了机器人行走性能试验,在试验场地有A,B,C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A,B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:
(1)A,B两点之间的距离是__70__米,甲机器人前2分钟的速度为__95__米/分;
(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;
(3)若线段FG∥x轴,则此段时间,甲机器人的速度为__60__米/分;
(4)求A,C两点之间的距离;
(5)直接写出两机器人出发多长时间相距28米.
解:(2)y=35x-70 (4)A,C两点之间的距离为70+60×7=490(米) (5)设两机器人出发x分钟相距28米,前2分钟,由题意得60x+70-95x=28,解得x=1.2;2分钟~3分钟,由题意得35x-70=28,解得x=2.8;4分钟~7分钟,直线GH经过点(4,35)和点(7,0),可求当y=28时,x=4.6.综上可知,两机器人出发1.2分或2.8分或4.6分时相距28米
相关试卷
这是一份人教版8年级下学期数学期末测试卷02,共8页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性,已知A样本的数据如下,下列说法中,错误的是等内容,欢迎下载使用。
这是一份人教版8年级下学期数学期末测试卷01,共11页。试卷主要包含了高度抽象性,严密逻辑性,广泛应用性等内容,欢迎下载使用。
这是一份人教版7年级下学期数学期末测试卷11,共7页。试卷主要包含了下列说法,关于x的方程3x+2,下列条件,如果等内容,欢迎下载使用。