2024全国卷高考数学真题分类汇编学生及教师版——立体几何
展开2.(2024年新课标全国Ⅱ卷)已知正三棱台的体积为,,,则与平面ABC所成角的正切值为( )
A.B.1C.2D.3
3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为和,母线长分别为和,则两个圆台的体积之比 .
4.(2024年新课标全国Ⅰ卷)如图,四棱锥中,底面ABCD,,.
(1)若,证明:平面;
(2)若,且二面角的正弦值为,求.
5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD中,,,,,,点E,F满足,,将沿EF对折至,使得.
(1)证明:;
(2)求面PCD与面PBF所成的二面角的正弦值.
6.(2024年高考全国甲卷数学(理))如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,,,,为的中点.
(1)证明:平面;
(2)求二面角的正弦值.
7.立体几何
1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
A.B.C.D.
【详解】设圆柱的底面半径为,则圆锥的母线长为,
而它们的侧面积相等,所以即,
故,故圆锥的体积为.
故选:B.
2.(2024年新课标全国Ⅱ卷)已知正三棱台的体积为,,,则与平面ABC所成角的正切值为( )
A.B.1C.2D.3
【详解】解法一:分别取的中点,则,
可知,
设正三棱台的为,
则,解得,
如图,分别过作底面垂线,垂足为,设,
则,,
可得,
结合等腰梯形可得,
即,解得,
所以与平面ABC所成角的正切值为;
解法二:将正三棱台补成正三棱锥,
则与平面ABC所成角即为与平面ABC所成角,
因为,则,
可知,则,
设正三棱锥的高为,则,解得,
取底面ABC的中心为,则底面ABC,且,
所以与平面ABC所成角的正切值.
故选:B.
3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为和,母线长分别为和,则两个圆台的体积之比 .
【详解】由题可得两个圆台的高分别为,
,
所以.
故答案为:.
4.(2024年新课标全国Ⅰ卷)如图,四棱锥中,底面ABCD,,.
(1)若,证明:平面;
(2)若,且二面角的正弦值为,求.
【详解】(1)(1)因为平面,而平面,所以,
又,,平面,所以平面,
而平面,所以.
因为,所以, 根据平面知识可知,
又平面,平面,所以平面.
(2)如图所示,过点D作于,再过点作于,连接,
因为平面,所以平面平面,而平面平面,
所以平面,又,所以平面,
根据二面角的定义可知,即为二面角的平面角,
即,即.
因为,设,则,由等面积法可得,,
又,而为等腰直角三角形,所以,
故,解得,即.
5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD中,,,,,,点E,F满足,,将沿EF对折至,使得.
(1)证明:;
(2)求面PCD与面PBF所成的二面角的正弦值.
【详解】(1)由,
得,又,在中,
由余弦定理得,
所以,则,即,
所以,又平面,
所以平面,又平面,
故;
(2)连接,由,则,
在中,,得,
所以,由(1)知,又平面,
所以平面,又平面,
所以,则两两垂直,建立如图空间直角坐标系,
则,
由是的中点,得,
所以,
设平面和平面的一个法向量分别为,
则,,
令,得,
所以,
所以,
设平面和平面所成角为,则,
即平面和平面所成角的正弦值为.
6.(2024年高考全国甲卷数学(理))如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,,,,为的中点.
(1)证明:平面;
(2)求二面角的正弦值.
【详解】(1)因为为的中点,所以,
四边形为平行四边形,所以,又因为平面,
平面,所以平面;
(2)如图所示,作交于,连接,
因为四边形为等腰梯形,,所以,
结合(1)为平行四边形,可得,又,
所以为等边三角形,为中点,所以,
又因为四边形为等腰梯形,为中点,所以,
四边形为平行四边形,,
所以为等腰三角形,与底边上中点重合,,,
因为,所以,所以互相垂直,
以方向为轴,方向为轴,方向为轴,建立空间直角坐标系,
,,,
,设平面的法向量为,
平面的法向量为,
则,即,令,得,即,
则,即,令,得,
即,,则,
故二面角的正弦值为.
2024全国卷高考数学真题分类汇编学生及教师版——逻辑命题: 这是一份2024全国卷高考数学真题分类汇编学生及教师版——逻辑命题,共3页。
2024全国卷高考数学真题分类汇编学生及教师版——解析几何: 这是一份2024全国卷高考数学真题分类汇编学生及教师版——解析几何,共15页。试卷主要包含了已知和为椭圆上两点.,设椭圆的右焦点为,点在上,且轴,已知双曲线,点在上,为常数,等内容,欢迎下载使用。
2024全国卷高考数学真题分类汇编学生及教师版——复数: 这是一份2024全国卷高考数学真题分类汇编学生及教师版——复数,共2页。