|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024全国卷高考数学真题分类汇编学生及教师版——立体几何
    立即下载
    加入资料篮
    2024全国卷高考数学真题分类汇编学生及教师版——立体几何01
    2024全国卷高考数学真题分类汇编学生及教师版——立体几何02
    2024全国卷高考数学真题分类汇编学生及教师版——立体几何03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024全国卷高考数学真题分类汇编学生及教师版——立体几何

    展开
    这是一份2024全国卷高考数学真题分类汇编学生及教师版——立体几何,共8页。

    2.(2024年新课标全国Ⅱ卷)已知正三棱台的体积为,,,则与平面ABC所成角的正切值为( )
    A.B.1C.2D.3
    3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为和,母线长分别为和,则两个圆台的体积之比 .
    4.(2024年新课标全国Ⅰ卷)如图,四棱锥中,底面ABCD,,.
    (1)若,证明:平面;
    (2)若,且二面角的正弦值为,求.
    5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD中,,,,,,点E,F满足,,将沿EF对折至,使得.
    (1)证明:;
    (2)求面PCD与面PBF所成的二面角的正弦值.
    6.(2024年高考全国甲卷数学(理))如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,,,,为的中点.
    (1)证明:平面;
    (2)求二面角的正弦值.
    7.立体几何
    1.(2024年新课标全国Ⅰ卷)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
    A.B.C.D.
    【详解】设圆柱的底面半径为,则圆锥的母线长为,
    而它们的侧面积相等,所以即,
    故,故圆锥的体积为.
    故选:B.
    2.(2024年新课标全国Ⅱ卷)已知正三棱台的体积为,,,则与平面ABC所成角的正切值为( )
    A.B.1C.2D.3
    【详解】解法一:分别取的中点,则,
    可知,
    设正三棱台的为,
    则,解得,
    如图,分别过作底面垂线,垂足为,设,
    则,,
    可得,
    结合等腰梯形可得,
    即,解得,
    所以与平面ABC所成角的正切值为;
    解法二:将正三棱台补成正三棱锥,
    则与平面ABC所成角即为与平面ABC所成角,
    因为,则,
    可知,则,
    设正三棱锥的高为,则,解得,
    取底面ABC的中心为,则底面ABC,且,
    所以与平面ABC所成角的正切值.
    故选:B.
    3.(2024年高考全国甲卷数学(理))已知甲、乙两个圆台上、下底面的半径均为和,母线长分别为和,则两个圆台的体积之比 .
    【详解】由题可得两个圆台的高分别为,

    所以.
    故答案为:.
    4.(2024年新课标全国Ⅰ卷)如图,四棱锥中,底面ABCD,,.
    (1)若,证明:平面;
    (2)若,且二面角的正弦值为,求.
    【详解】(1)(1)因为平面,而平面,所以,
    又,,平面,所以平面,
    而平面,所以.
    因为,所以, 根据平面知识可知,
    又平面,平面,所以平面.
    (2)如图所示,过点D作于,再过点作于,连接,
    因为平面,所以平面平面,而平面平面,
    所以平面,又,所以平面,
    根据二面角的定义可知,即为二面角的平面角,
    即,即.
    因为,设,则,由等面积法可得,,
    又,而为等腰直角三角形,所以,
    故,解得,即.
    5.(2024年新课标全国Ⅱ卷)如图,平面四边形ABCD中,,,,,,点E,F满足,,将沿EF对折至,使得.
    (1)证明:;
    (2)求面PCD与面PBF所成的二面角的正弦值.
    【详解】(1)由,
    得,又,在中,
    由余弦定理得,
    所以,则,即,
    所以,又平面,
    所以平面,又平面,
    故;
    (2)连接,由,则,
    在中,,得,
    所以,由(1)知,又平面,
    所以平面,又平面,
    所以,则两两垂直,建立如图空间直角坐标系,
    则,
    由是的中点,得,
    所以,
    设平面和平面的一个法向量分别为,
    则,,
    令,得,
    所以,
    所以,
    设平面和平面所成角为,则,
    即平面和平面所成角的正弦值为.
    6.(2024年高考全国甲卷数学(理))如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,,,,为的中点.
    (1)证明:平面;
    (2)求二面角的正弦值.
    【详解】(1)因为为的中点,所以,
    四边形为平行四边形,所以,又因为平面,
    平面,所以平面;
    (2)如图所示,作交于,连接,
    因为四边形为等腰梯形,,所以,
    结合(1)为平行四边形,可得,又,
    所以为等边三角形,为中点,所以,
    又因为四边形为等腰梯形,为中点,所以,
    四边形为平行四边形,,
    所以为等腰三角形,与底边上中点重合,,,
    因为,所以,所以互相垂直,
    以方向为轴,方向为轴,方向为轴,建立空间直角坐标系,
    ,,,
    ,设平面的法向量为,
    平面的法向量为,
    则,即,令,得,即,
    则,即,令,得,
    即,,则,
    故二面角的正弦值为.
    相关试卷

    2024全国卷高考数学真题分类汇编学生及教师版——逻辑命题: 这是一份2024全国卷高考数学真题分类汇编学生及教师版——逻辑命题,共3页。

    2024全国卷高考数学真题分类汇编学生及教师版——解析几何: 这是一份2024全国卷高考数学真题分类汇编学生及教师版——解析几何,共15页。试卷主要包含了已知和为椭圆上两点.,设椭圆的右焦点为,点在上,且轴,已知双曲线,点在上,为常数,等内容,欢迎下载使用。

    2024全国卷高考数学真题分类汇编学生及教师版——复数: 这是一份2024全国卷高考数学真题分类汇编学生及教师版——复数,共2页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024全国卷高考数学真题分类汇编学生及教师版——立体几何
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map