终身会员
搜索
    上传资料 赚现金

    2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第02讲:最值问题 原卷版

    立即下载
    加入资料篮
    2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第02讲:最值问题 原卷版第1页
    2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第02讲:最值问题 原卷版第2页
    2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第02讲:最值问题 原卷版第3页
    还剩7页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第02讲:最值问题 原卷版

    展开

    这是一份2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第02讲:最值问题 原卷版,共10页。


    考点一:将军饮马问题
    考点二:阿氏圆问题
    考点三:胡不归问题
    考点四:隐圆问题
    考点五:费马点问题
    【题型精讲】
    题型一:将军饮马问题
    1.(22-23九年级上·安徽池州·期末)如图,中,,点P为AC边上的动点,过点P作于点D,则的最小值为( )
    A.B.C.5D.
    2.(2022·河南·三模)如图1,正方形中,点是的中点,点是对角线上的一个动点,设,,当点从向点运动时,与的函数关系如图2所示,其中点是函数图象的最低点,则点的坐标是( )
    A.B.C.D.
    3.(2020·江苏南通·中考真题)如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为( )

    A.B.2C.2D.3
    题型二:阿氏圆问题
    4.(2021九年级·全国·专题练习)如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则的最大值为 .
    5.(2020·广西·中考真题)如图,在Rt中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是 .
    6.(2020·江苏南京·二模)如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是 .

    题型三:胡不归问题
    7.(2022·内蒙古鄂尔多斯·中考真题)如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为 .
    8.(21-22九年级下·湖北)如图,在中,,,半径为的经过点,是圆的切线,且圆的直径在线段上,设点是线段上任意一点不含端点,则的最小值为 .
    9.(2020·陕西·模拟预测)如图,四边形ABCD是菱形,AB=8,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则AM+BM的最小值为 .
    题型四:隐圆问题
    10.(22-23九年级下·江苏·阶段练习)如图,正方形的边长为4,的半径为2,为上的动点,则的最大值是 .
    11.(2022·山东济南·一模)如图,在矩形中,,,点、分别是边、上的动点,且,点是的中点,、,则四边形面积的最小值为 .
    12.(2022·广东汕头·一模)如图,在△ABC中,∠C=90°,AC=8,AB=10,D是AC上一点,且CD=3,E是BC边上一点,将△DCE沿DE折叠,使点C落在点F处,连接BF,则BF的最小值为 .
    题型五:费马点问题
    13.(2022·广东广州·一模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点P是AB边上一动点,作PD⊥BC于点D,线段AD上存在一点Q,当QA+QB+QC的值取得最小值,且AQ=2时,则PD= .
    14.(21-22九年级上·四川成都·阶段练习)如图,在中,,P是内一点,求的最小值为 .
    15.(2021九年级·全国·专题练习)如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为 .
    【专题精练】
    一、单选题
    16.(2021九年级·全国)如图,的半径为2,圆心M的坐标为,点P是上的任意一点,,且、与x轴分别交于A、B两点,若点A、点B关于原点O对称,则的最小值( )
    A.3B.4C.5D.6
    17.(2023·安徽·一模)如图,在矩形中,,,点E是矩形内部一动点,且,点P是边上一动点,连接、,则的最小值为( )
    A.8B.C.10D.
    18.(22-23九年级上·浙江金华·期末)如图,正方形的边长为4,点E是正方形内的动点,点P是边上的动点,且.连结,,,,则的最小值为( )
    A.B.C.D.
    19.(2022·辽宁鞍山·二模)如图,在平面直角坐标系中,二次函数的图像与x轴交于A、C两点,与x轴交于点,若P是x轴上一动点,点D的坐标为,连接PD,则的最小值是( )
    A.4B.C.D.
    20.(2022·山东泰安·中考真题)如图,四边形为矩形,,.点P是线段上一动点,点M为线段上一点.,则的最小值为( )
    A.B.C.D.
    21.(2022·广东梅州·一模)如图,在Rt和Rt中,,,AB=AE=5.连接BD,CE,将△绕点A旋转一周,在旋转的过程中当最大时,△ACE的面积为( ).
    A.6B.C.9D.
    22.(2022·山东济南·一模)正方形ABCD中,AB=4,点E、F分别是CD、BC边上的动点,且始终满足DE=CF,DF、AE相交于点G.以AG为斜边在AG下方作等腰直角△AHG使得∠AHG=90°,连接BH.则BH的最小值为( )
    A.B.C.D.
    23.(2022·安徽蚌埠·一模)如图,中,,,,P是内部的一个动点,满足,则线段CP长的最小值为( )
    A.B.2C.D.
    24.(21-22九年级上·江苏苏州·阶段练习)如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象与x轴交于A、C两点,与y轴交于点B(0,﹣3),若P是x轴上一动点,点D(0,1)在y轴上,连接PD,则PD+PC的最小值是( )
    A.4B.2+2C.2D.
    25.(2021九年级·全国·专题练习)如图,在Rt△ABC中,∠ACB=90°,CB=7,AC=9,以C为圆心、3为半径作⊙C,P为⊙C上一动点,连接AP、BP,则AP+BP的最小值为( )

    A.7B.5C.D.
    二、填空题
    26.(2020·江苏常州·一模)如图,在中,点A、点B在上,,,点C在OA上,且,点D是的中点,点M是劣弧AB上的动点,则的最小值为 .
    27.(2020·山东东营·三模)如图,正方形的边长为8,M在上,且,N是上一动点,则的最小值为
    28.(2024九年级·全国·竞赛)如图,在中,直径,位于点两侧且垂直于直径的两条弦长分别为,,若点为直径上任意一点,则的最小值为 .
    29.(2022九年级上·浙江·专题练习)如图所示,,半径为的圆内切于.为圆上一动点,过点作、分别垂直于的两边,垂足为、,则的取值范围为 .

    30.(23-24九年级上·贵州六盘水·阶段练习)如图,正方形中,点P是上一点,若,,则的最小值是 .

    31.(22-23九年级下·江苏宿迁·阶段练习)如图,矩形,,,E为中点,F为直线上动点,B、G关于对称,连接,点P为平面上的动点,满足,则的最小值 .
    32.(2022·湖南湘潭·模拟预测)如图,菱形草地中,沿对角线修建60米和80米两条道路,M、N分别是草地边、的中点,在线段BD上有一个流动饮水点,若要使的距离最短,则最短距离是 米.
    33.(22-23九年级上·广东广州·期末)如图,四边形中,,,,,点是四边形内的一个动点,满足,则面积的最小值为 .
    34.(22-23八年级上·湖南长沙·期末)如图,在等边中,于,.点分别为上的两个定点且,点为线段上一动点,连接,则的最小值为 .
    35.(22-23九年级上·山东菏泽)如图,在周长为的菱形中,,,若为对角线上一动点,则的最小值为 .

    相关试卷

    最新中考数学难点突破与经典模型精讲练 专题22 最值问题中的瓜豆原理模型 (全国通用):

    这是一份最新中考数学难点突破与经典模型精讲练 专题22 最值问题中的瓜豆原理模型 (全国通用),文件包含专题22最值问题中的瓜豆原理模型原卷版docx、专题22最值问题中的瓜豆原理模型解析版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。

    最新中考数学难点突破与经典模型精讲练 专题21 最值问题中的阿氏圆模型 (全国通用):

    这是一份最新中考数学难点突破与经典模型精讲练 专题21 最值问题中的阿氏圆模型 (全国通用),文件包含专题21最值问题中的阿氏圆模型原卷版docx、专题21最值问题中的阿氏圆模型解析版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。

    最新中考数学难点突破与经典模型精讲练 专题20 最值问题中的构造圆与隐形圆模型 (全国通用):

    这是一份最新中考数学难点突破与经典模型精讲练 专题20 最值问题中的构造圆与隐形圆模型 (全国通用),文件包含专题20最值问题中的构造圆与隐形圆模型原卷版docx、专题20最值问题中的构造圆与隐形圆模型解析版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024届中考数学考前《终讲·终练·终卷》冲刺高分突破(全国通用)第02讲:最值问题 原卷版
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map