所属成套资源:2024高考数学模拟卷01-冲刺2024年高考数学考前必刷题(新高考通用)
- 打卡第七天-10天刷完高考真题(新高考Ⅰ和Ⅱ卷2021-2023)-冲刺2024年高考数学考前必刷题(新高考通用)(原卷版+解析版) 试卷 1 次下载
- 打卡第三天-10天刷完高考真题(新高考ⅠⅡ卷2021-2023)-冲刺2024年高考数学考前必刷题(新高考通用)(原卷版+解析版) 试卷 1 次下载
- 打卡第九天-10天刷完高考真题(新高考Ⅰ和Ⅱ卷2021-2023)-冲刺2024年高考数学考前必刷题(新高考通用)(原卷版+解析版) 试卷 1 次下载
- 打卡第二天-10天刷完高考真题(新高考ⅠⅡ卷2021-2023)-冲刺2024年高考数学考前必刷题(新高考通用)(原卷版+解析版) 试卷 1 次下载
- 打卡第五天-10天刷完高考真题(新高考Ⅰ和Ⅱ卷2021-2023)-冲刺2024年高考数学考前必刷题(新高考通用)(原卷版+解析版) 试卷 1 次下载
打卡第一天-10天刷完高考真题(新高考ⅠⅡ卷2021-2023)-冲刺2024年高考数学考前必刷题(新高考通用)(原卷版+解析版)
展开
这是一份打卡第一天-10天刷完高考真题(新高考ⅠⅡ卷2021-2023)-冲刺2024年高考数学考前必刷题(新高考通用)(原卷版+解析版),文件包含打卡第一天-10天刷完高考真题新高考ⅠⅡ卷2021-2023-冲刺2024年高考数学考前必刷题新高考通用原卷版docx、打卡第一天-10天刷完高考真题新高考ⅠⅡ卷2021-2023-冲刺2024年高考数学考前必刷题新高考通用解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
Ⅱ 真题限时训练
新高考真题限时训练打卡第一天
难度:一般 建议用时:60分钟
一、单选题
1.(2023·全国·统考高考真题)已知集合,,则( )
A.B.C.D.2
【答案】C
【分析】方法一:由一元二次不等式的解法求出集合,即可根据交集的运算解出.
方法二:将集合中的元素逐个代入不等式验证,即可解出.
【详解】方法一:因为,而,
所以.
故选:C.
方法二:因为,将代入不等式,只有使不等式成立,所以.
故选:C.
2.(2023·全国·统考高考真题)已知向量,若,则( )
A.B.
C.D.
【答案】D
【分析】根据向量的坐标运算求出,,再根据向量垂直的坐标表示即可求出.
【详解】因为,所以,,
由可得,,
即,整理得:.
故选:D.
3.(2023·全国·统考高考真题)设椭圆的离心率分别为.若,则( )
A.B.C.D.
【答案】A
【分析】根据给定的椭圆方程,结合离心率的意义列式计算作答.
【详解】由,得,因此,而,所以.
故选:A
4.(2023·全国·统考高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ).
A.种B.种
C.种D.种
【答案】D
【分析】利用分层抽样的原理和组合公式即可得到答案.
【详解】根据分层抽样的定义知初中部共抽取人,高中部共抽取,
根据组合公式和分步计数原理则不同的抽样结果共有种.
故选:D.
5.(2023·全国·统考高考真题)已知为锐角,,则( ).
A.B.C.D.
【答案】D
【分析】根据二倍角公式(或者半角公式)即可求出.
【详解】因为,而为锐角,
解得:.
故选:D.
6.(2023·全国·统考高考真题)若为偶函数,则( ).
A.B.0C.D.1
【答案】B
【分析】根据偶函数性质,利用特殊值法求出值,再检验即可.
【详解】因为 为偶函数,则 ,解得,
当时,,,解得或,
则其定义域为或,关于原点对称.
,
故此时为偶函数.
故选:B.
二、多选题
7.(2023·全国·统考高考真题)有一组样本数据,其中是最小值,是最大值,则( )
A.的平均数等于的平均数
B.的中位数等于的中位数
C.的标准差不小于的标准差
D.的极差不大于的极差
【答案】BD
【分析】根据题意结合平均数、中位数、标准差以及极差的概念逐项分析判断.
【详解】对于选项A:设的平均数为,的平均数为,
则,
因为没有确定的大小关系,所以无法判断的大小,
例如:,可得;
例如,可得;
例如,可得;故A错误;
对于选项B:不妨设,
可知的中位数等于的中位数均为,故B正确;
对于选项C:因为是最小值,是最大值,
则的波动性不大于的波动性,即的标准差不大于的标准差,
例如:,则平均数,
标准差,
,则平均数,
标准差,
显然,即;故C错误;
对于选项D:不妨设,
则,当且仅当时,等号成立,故D正确;
故选:BD.
8.(2023·全国·统考高考真题)若函数既有极大值也有极小值,则( ).
A.B.C.D.
【答案】BCD
【分析】求出函数的导数,由已知可得在上有两个变号零点,转化为一元二次方程有两个不等的正根判断作答.
【详解】函数的定义域为,求导得,
因为函数既有极大值也有极小值,则函数在上有两个变号零点,而,
因此方程有两个不等的正根,
于是,即有,,,显然,即,A错误,BCD正确.
故选:BCD
三、填空题
9.(2023·全国·统考高考真题)已知直线与交于A,B两点,写出满足“面积为”的m的一个值 .
【答案】(中任意一个皆可以)
【分析】根据直线与圆的位置关系,求出弦长,以及点到直线的距离,结合面积公式即可解出.
【详解】设点到直线的距离为,由弦长公式得,
所以,解得:或,
由,所以或,解得:或.
故答案为:(中任意一个皆可以).
10.(2023·全国·统考高考真题)在正四棱台中,,则该棱台的体积为 .
【答案】/
【分析】结合图像,依次求得,从而利用棱台的体积公式即可得解.
【详解】如图,过作,垂足为,易知为四棱台的高,
因为,
则,
故,则,
所以所求体积为.
故答案为:.
四、解答题
11.(2023·全国·统考高考真题)已知在中,.
(1)求;
(2)设,求边上的高.
【答案】(1)
(2)6
【分析】(1)根据角的关系及两角和差正弦公式,化简即可得解;
(2)利用同角之间的三角函数基本关系及两角和的正弦公式求,再由正弦定理求出,根据等面积法求解即可.
【详解】(1),
,即,
又,
,
,
,
即,所以,
.
(2)由(1)知,,
由,
由正弦定理,,可得,
,
.
12.(2023·全国·统考高考真题)已知为等差数列,,记,分别为数列,的前n项和,,.
(1)求的通项公式;
(2)证明:当时,.
【答案】(1);
(2)证明见解析.
【分析】(1)设等差数列的公差为,用表示及,即可求解作答.
(2)方法1,利用(1)的结论求出,,再分奇偶结合分组求和法求出,并与作差比较作答;方法2,利用(1)的结论求出,,再分奇偶借助等差数列前n项和公式求出,并与作差比较作答.
【详解】(1)设等差数列的公差为,而,
则,
于是,解得,,
所以数列的通项公式是.
(2)方法1:由(1)知,,,
当为偶数时,,
,
当时,,因此,
当为奇数时,,
当时,,因此,
所以当时,.
方法2:由(1)知,,,
当为偶数时,,
当时,,因此,
当为奇数时,若,则
,显然满足上式,因此当为奇数时,,
当时,,因此,
所以当时,.
13.(2023·全国·统考高考真题)已知函数.
(1)讨论的单调性;
(2)证明:当时,.
【答案】(1)答案见解析
(2)证明见解析
【分析】(1)先求导,再分类讨论与两种情况,结合导数与函数单调性的关系即可得解;
(2)方法一:结合(1)中结论,将问题转化为的恒成立问题,构造函数,利用导数证得即可.
方法二:构造函数,证得,从而得到,进而将问题转化为的恒成立问题,由此得证.
【详解】(1)因为,定义域为,所以,
当时,由于,则,故恒成立,
所以在上单调递减;
当时,令,解得,
当时,,则在上单调递减;
当时,,则在上单调递增;
综上:当时,在上单调递减;
当时,在上单调递减,在上单调递增.
(2)方法一:
由(1)得,,
要证,即证,即证恒成立,
令,则,
令,则;令,则;
所以在上单调递减,在上单调递增,
所以,则恒成立,
所以当时,恒成立,证毕.
方法二:
令,则,
由于在上单调递增,所以在上单调递增,
又,
所以当时,;当时,;
所以在上单调递减,在上单调递增,
故,则,当且仅当时,等号成立,
因为,
当且仅当,即时,等号成立,
所以要证,即证,即证,
令,则,
令,则;令,则;
所以在上单调递减,在上单调递增,
所以,则恒成立,
所以当时,恒成立,证毕.
Ⅲ 精选模拟题预测
一、单选题
1.已知集合,,则( )
A.B.C.D.
【答案】B
【分析】根据对数与分式的意义可得,再根据根式的值域可得,进而可得.
【详解】由可得,解得,
又,
故.
故选:B
2.已知,则等于( )
A.10B.C.3D.
【答案】B
【分析】根据题意,利用向量的数量积的坐标运算公式,准确计算即可求解.
【详解】由向量,可得,
所以.
故选:B.
3.已知椭圆的焦距为2,且,则的离心率为( )
A.B.C.D.
【答案】D
【分析】由椭圆的定义得到,再由椭圆的性质得到,结合已知条件解方程组,最后求出离心率即可.
【详解】根据题意有半焦距,故①,且②,
联立①②解得的离心率.
故选:D.
4.某校有东、南、西、北四个校门,为了加大防疫的力度,学校做出如下规定:北门封闭,学生只能从东门或西门进入校园,教师不能从西门进入校园.现有名教师和名学生要进入校园(不分先后顺序),则这人进入校园的方式共有( )
A.7种B.64种C.128种D.648种
【答案】C
【分析】分别求出名学生进入校园方式的总个数,再求出名教师进入校园方式的总个数,再利用分步乘法计算原理求解即可.
【详解】因为学生只能从东门或西门进入校园,所以名学生进入校园的方式共有种.
依题意可得教师只能从东门或南门进入校园,所以名教师进入校园的方式共有种.
所以这人进入校园的方式共有种.
故选:C.
5.若,则( )
A.B.C.D.
【答案】C
【分析】根据同角的三角函数关系式,结合两角差的正弦公式、二倍角的余弦公式进行求解即可.
【详解】由,
由,
.
故选:C
6.已知是奇函数,则( )
A.-1B.1C.-2D.2
【答案】B
【分析】根据题意,利用,求得的值,进而求得的值,得到答案.
【详解】由函数,
因为是奇函数,所以,
即,
整理得,解得,
所以.
故选:B.
二、多选题
7.党的二十大作出“发展海洋经济,保护海洋生态环境,加快建设海洋强国”的战略部署.如图是2018—2023年中国海洋生产总值的条形统计图,根据图中数据可知下列结论正确的是( )
A.从2018年开始,中国海洋生产总值逐年增大
B.从2019年开始,中国海洋生产总值的年增长率最大的是2021年
C.这6年中国海洋生产总值的极差为15122
D.这6年中国海洋生产总值的80%分位数是94628
【答案】BD
【分析】对A,根据条形图数据可判断;对B,根据数据计算年增长率可判断;对C,计算极差可判断;对D,根据80%分位数概念计算可判断.
【详解】对于A,根据条形图数据可以看到2020年较2019年海洋生产总值是下降的,故A错误;
对于B,2019年海洋生产总值年增长率是,
2020年海洋生产总值年增长率是,2021年海洋生产总值年增长率是,
2022年海洋生产总值年增长率是,2023年海洋生产总值年增长率是,
故年增长率最大的是2021年,故B正确;
对于C,这6年中国海洋生产总值的极差为,故C错误;
对于D,将这6年的海洋生产总值按照从小到大排列80010,83415,89415,90385,94628,98537,又,
所以这6年中国海洋生产总值的80%分位数是94628,故D正确.
故选:BD.
8.已知函数,若函数恰有5个零点,则m的值可以是( )
A.0B.1C.D.2
【答案】BC
【分析】先作出函数的图象,然后结合函数的零点与方程的根的关系,得到方程的一个根在,一个根在,结合一元二次方程的根的分布问题即可求解.
【详解】记,作出函数的图象如图所示,
令,则由图可知,当时,方程只有一个根;
当时,方程有两个根;当时,方程只有一个根;
显然不是方程的根;
若是方程的根,则,此时,
结合图象可知,此时方程和方程共有4个根,则函数有4个零点,不满足题意;
所以恰有5个零点等价于方程恰有5个实根,
等价于方程的一个根在,一个根在,
令,则,所以,
结合选项可知,m的值可以是1和.故选:BC
三、填空题
9.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的A处出发,沿A处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为 分钟.
【答案】2
【分析】建立平面直角坐标系,求出直线的方程,利用点到直线距离公式和垂径定理求出弦长,进而求出答案.
【详解】以设备的位置为坐标原点,其正东方向为轴正方向,
正北方向为轴正方向建立平面直角坐标系,如图所示,
则,,所以直线,
可得,即,
圆.
记从处开始被监测,到处监测结束,
因为到的距离为米,
所以米,
故监测时长为分钟.
故答案为:2
10.招待客人时,人们常使用一次性纸杯,将其视为圆台,设其杯底直径为,杯口直径为,高为ℎ,将该纸杯装满水(水面与杯口齐平)后,再将一直径为的小铁球缓慢放入杯中,待小铁球完全沉入水中并静止后,从杯口溢出水的体积为纸杯容积的,则
【答案】4
【分析】利用圆台及球的体积公式结合条件即得.
【详解】解:由题可得纸杯的体积为,
小铁球的体积为,
由题可得,即.
故答案为:4
四、解答题
11.设的内角的对边分别为,已知.
(1)求;
(2)设的角平分线交于点,求的最小值.
【答案】(1)
(2)9
【分析】(1)首先根据正弦定理将边化为角,再结合三角恒等变换,即可求解;
(2)首先根据角平分线的性质,结合三角形的面积公式,求得,再结合基本不等式,即可求解.
【详解】(1).
由正弦定理,得
,即
,即
(2)由题意可得,
即
当且仅当,即时,等号成立,
所以的最小值为9.
12.已知为等差数列,,记分别为数列的前项和,.
(1)求的通项公式;
(2)求.
【答案】(1)
(2)
【分析】(1)根据条件转化为关于等差数列的首项和公差的方程组,列式求解;
(2)根据数列的通项公式,以及数列与的关系,利用分组转化的方法,即可求和.
【详解】(1)设等差数列的公差为,
,
,
整理得,解得
;
(2)当n为偶数时,
;
当为奇数时,,
,
当时,上式也成立;
.
13.已知函数,.
(1)讨论函数的单调性;
(2)证明:当时,恒成立.
【答案】(1)答案见解析;
(2)证明见解析.
【分析】(1)对参数分类讨论,在不同情况下利用导数判断函数单调性,即可求得结果;
(2)将问题转化为证明,构造函数,利用导数判断其单调性,结合题意,即可证明.
【详解】(1)的定义域是,,
①时,,在单调递增,
②时,,
令,解得;令,解得,
故在递减,在递增,
综上:
时,在单调递增,时,在递减,在递增.
(2)要证,即证,,
①当时,,,该不等式恒成立;
②当时,,结合,得,
只需证明:,即证,
令,,
令,则,
令,则在上恒成立,
所以在上单调递增,
又,,所以存在,使得,
所以在上单调递减,在上单调递增,
又,,,,
所以当时,;当时,,
即函数在上单调递减,在上单调递增,
所以,问题得证,
即当时,恒成立.
综上所述,当时,恒成立.
相关试卷
这是一份打卡第九天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版,文件包含打卡第九天-10天刷完高考真题冲刺2023年高考数学考前必刷题限时集训练新高考通用解析版docx、打卡第九天-10天刷完高考真题冲刺2023年高考数学考前必刷题限时集训练新高考通用原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份打卡第七天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版,文件包含打卡第七天-10天刷完高考真题冲刺2023年高考数学考前必刷题限时集训练新高考通用解析版docx、打卡第七天-10天刷完高考真题冲刺2023年高考数学考前必刷题限时集训练新高考通用原卷版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份打卡第六天-【10天刷完高考真题】冲刺2023年高考数学考前必刷题限时集训练(新高考通用)原卷版+解析版,文件包含打卡第六天-10天刷完高考真题冲刺2023年高考数学考前必刷题限时集训练新高考通用解析版docx、打卡第六天-10天刷完高考真题冲刺2023年高考数学考前必刷题限时集训练新高考通用原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。