终身会员
搜索
    上传资料 赚现金
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      4.5.3 函数模型的应用(第1课时)(教学课件).pptx
    • 练习
      4.5.3 函数模型的应用导学案(原卷版).docx
    • 学案
      4.5.3 函数模型的应用导学案(解析版).docx
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析01
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析02
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析03
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析04
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析05
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析06
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析07
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析08
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析01
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析02
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析03
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析01
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析02
    4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析03
    还剩14页未读, 继续阅读
    下载需要35学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学人教A版 (2019)数学建模 建立函数模型解决实际问题一等奖作业课件ppt

    展开
    这是一份数学人教A版 (2019)数学建模 建立函数模型解决实际问题一等奖作业课件ppt,文件包含453函数模型的应用第1课时教学课件pptx、453函数模型的应用导学案原卷版docx、453函数模型的应用导学案解析版docx等3份课件配套教学资源,其中PPT共22页, 欢迎下载使用。

    我们知道 , 函数是描述客观世界变化规律的数学模型 , 不同的变化规律需要用不同的函数模型来刻画 . 面临一个实际问题 , 该如何选择恰当的函数模型来刻画它呢?
    例3、人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为制定一系列相关政策提供依据.早在 1978 年,英国经济学家马尔萨斯(,1766—1834)就提出了自然状态下的人口增长模型y=y0ert,其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料
    (1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率 (精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按上表的增长趋势,那么大约在哪一年我国的人口数达到13亿?
    事实上 , 我国 1989年的人口数为 11.27亿 , 直到 2005年才突破13 亿 . 对由函数模型所得的结果与实际情况不符 , 你有何看法 ?
    因为人口基数较大 , 人口增长过快 , 与我国经济发展水平产生了较大矛盾 , 所以我国从 20 世纪 70 年代逐步实施了计划生育政策 . 因此这一阶段的人口增长条件并不符合马尔萨斯人口增长模型的条件 , 自然就出现了依模型得到的结果与实际不符的情况 .
    例4、2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%,能否以此推断此水坝大概是什么年代建成的?
    分析:因为死亡生物机体内碳14的初始量按确定的衰减率衰减,属于指数衰减,所以应选择函数y=kax(k∈R,且k≠0;a>0,且a≠1)建立数学模型.
    解:设样本中碳14的初始量为k,衰减率为p(0于是 ,所以 由样本中碳14 的残余量约为初始量的55.2%可知 ,即       解得 .由计算工具得x≈4912.因为2010年之前的4912年是公元前2902年,所以推断此水坝大概是公元前2902年建成的.
    已知函数模型解决实际问题,往往给出的函数解析式含有参数,需要将题中的数据代入函数模型,求得函数模型中的参数,再将问题转化为已知函数解析式求函数值或自变量的值.
    所以,按照1650年人口的年增长率0.3%,232年后(即1882年)世界人口是1650年的2倍,达到10亿
    1.已知1650年世界人口为5亿,当时人口的年增长率为0.3%;1970年世界人口为36亿,当时人口的年增长率为2.1%. (1)用马尔萨斯人口模型计算,什么时候世界人口是1650年的2倍?什么时候世界人口是1970年的2倍? (2)实际上,1850年以前世界人口就超过了10亿;而2004年世界人口还没有达到72亿.你对同样的模型得出的两个结果有何看法?
    所以,按照1970年人口的年增长率2.1%,34年后(即2004年)世界人口是1970年的2倍,达到72亿
    (2)马尔萨斯人口模型是用来刻画自然状态下的人口增长模型,其中的参数r表示人口的年平均增长率.
    这两段时期都存在人口非自然增长的状况,且计算选择的增长率都不是 这两段时期的平均增长率,所以所得出的两个结果与实际存在差异.
    2.在一段时间内,某地的野兔快速繁殖,野兔总只数的倍增期为21个月,那么1万只野兔增长到1亿1只野兔大约需要多少年?
    分析:由于快速繁殖的野兔的倍增期为21个月,则可选择指数函数模型刻画该地在这段时间内野兔的增长规律.
    3.1959年,考古学家在河南洛阳偃师市区二里头村发掘出了一批古建筑群,从其中的某样本中检测出 碳14的残余量约为初始量的62.76%,能否以此推断二里头遗址大概是什么年代的?
    5.为落实国家“精准扶贫”政策,让市民吃上放心蔬菜,某企业于2017年在其扶贫基地投入100万元研发资金,用于蔬菜的种植及开发,并计划今后十年内在此基础上每年投入的资金比上一年增长10%.(1)写出第x年(2018年为第一年)该企业投入的资金数y(单位:万元)与x的函数关系式,并指出函数的定义域;(2)该企业从第几年开始(2018年为第一年),每年投入的资金数将超过200万元?(参考数据lg 0.11≈-0.959,lg 1.1≈0.041,lg 11≈1.041,lg 2≈0.301)
    解:(1)第一年投入的资金数为100(1+10%)万元,第二年投入的资金数为100(1+10%)+100(1+10%)10%=100(1+10%)2万元,第x年(2018年为第一年)该企业投入的资金数y(万元)与x的函数关系式为y=100(1+10%)x万元,其定义域为{x∈N*|x≤10}.即企业从第8年开始(2018年为第一年),每年投入的资金数将超过200万元.
    相关课件

    高中数学人教A版 (2019)必修 第一册4.5 函数的应用(二)作业ppt课件: 这是一份高中数学人教A版 (2019)必修 第一册<a href="/sx/tb_c4000277_t3/?tag_id=26" target="_blank">4.5 函数的应用(二)作业ppt课件</a>,文件包含453函数模型的应用第2课时教学课件pptx、453函数模型的应用原卷版docx、453函数模型的应用解析版docx等3份课件配套教学资源,其中PPT共34页, 欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册4.5 函数的应用(二)图片ppt课件: 这是一份高中数学人教A版 (2019)必修 第一册<a href="/sx/tb_c4000277_t3/?tag_id=26" target="_blank">4.5 函数的应用(二)图片ppt课件</a>,共34页。PPT课件主要包含了学习目标,温故知新,典例解析,归纳总结,回报金额,日回报,累计回报,三种方案每天回报表,一次函数,对数型函数等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册4.5 函数的应用(二)多媒体教学ppt课件: 这是一份高中数学人教A版 (2019)必修 第一册4.5 函数的应用(二)多媒体教学ppt课件,共47页。PPT课件主要包含了目标认知,图4-5-5,图4-5-6等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        4.5.3 函数模型的应用(第1课时)PPT+分层作业+答案解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map