所属成套资源:全国百强名校2024届新高三开学摸底考试卷及解析
数学-2024届新高三开学摸底考试卷(天津专用)(原卷及解析)
展开
这是一份数学-2024届新高三开学摸底考试卷(天津专用)(原卷及解析),文件包含数学-2024届新高三开学摸底考试卷天津专用全解全析docx、数学-2024届新高三开学摸底考试卷天津专用考试版A4docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题(本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知全集,集合,则( )
A.B.C.D.
2.设,则“”是“”的( )
A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
3.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数图象的特征.我们从这个商标中抽象出一个如图所示的图象,其对应的函数解析式可能是( )
A. B. C. D.
4.某城市在进行创建文明城市的活动中,为了解居民对“创建文明城”的满意程度,组织居民给活动打分(分数为整数,满分100分),从中随机抽取一个容量为120的样本,发现所给数据均在[40,100]内.现将这些分数分成以下6组并画出样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形则下列说法中有错误的是( )
A.第三组的频数为18人
B.根据频率分布直方图估计众数为75分
C.根据频率分布直方图估计样本的平均数为75分
D.根据频率分布直方图估计样本的中位数为75分
5.设,,则( )
A. B. C. D.
6.若所有棱长都是3的直三棱柱的六个顶点都在同一球面上,则该球的表面积是( )
A. B. C. D.
7.已知是抛物线的焦点,抛物线的准线与双曲线的两条渐近线交于,两点,若为等边三角形,则的离心率( )
A. B. C. D.
8.将函数的图象向右平移个单位后得到函数的图象,若在区间上单调递增,且函数的最大负零点在区间上,则的取值范围是
A. B. C. D.
9.如图,在四边形ABCD中,M为AB的中点,且,.若点N在线段CD(端点除外)上运动,则的取值范围是( )
A. B. C. D.
第Ⅱ卷
二、填空题:(本题共6小题,每小题5分,共30分。试题中包含两个空的,答对1个的给3分,全部答对的给5分。)
10.已知复数满足(其中为虚数单位),则复数的虚部为______________.
11.在的展开式中,的系数是______________.
12.已知圆的圆心与点关于直线对称,直线与圆相交于、两点,且,则圆的方程为______________.
13.已知,,,则的最小值为______________.
14.某校高三1班第一小组有男生4人,女生2人,为提高中学生对劳动教育重要性的认识,现需从中抽取2人参加学校开展的劳动技能学习,恰有一名女生参加劳动学习的概率则为______________;在至少有一名女生参加劳动学习的条件下,恰有一名女生参加劳动学习的概率______________.
15.已知函数,若存在实数.满足,且,则___________,的取值范围是______________.
三、解答题(本题共5小题,共75分,解答应写出文字说明、证明过程或演算步骤。)
16.(15分)在中,角,,所对的边分别为,,,且,,.
(1)求的值;
(2)求的值;
(3)求的值.
17.(15分)已知如图,四边形为矩形,为梯形,平面平面,,,.
(1)若为中点,求证:平面;
(2)求直线与平面所成角的正弦值;
(3)在线段上是否存在一点(除去端点),使得平面与平面所成锐二面角的大小为?若存在,请说明点的位置;若不存在,请说明理由.
18.(15分)已知过点的椭圆的离心率为. 如图所示,过椭圆右焦点的直线(不与轴重合)与椭圆相交于两点,直线与轴相交于点,过点A作,垂足为.
(1)求四边形为坐标原点的面积的最大值;
(2)求证:直线过定点,并求出点的坐标.
19.(15分)已知为等差数列,数列满足,且,,.
(1)求和的通项公式;
(2)若,求数列的前项和;
(3)设的前项和为,证明:.
20.(15分)已知函数,.
(1)讨论函数的单调性;
(2)记,设,为函数图象上的两点,且.
(ⅰ)当,时,若在点处的切线相互垂直,求证:;
(ii)若在点处的切线重合,求的取值范围.
相关试卷
这是一份【新高三摸底】2024届新高三-数学开学摸底考试卷(天津专用),文件包含新高三摸底2024届新高三-数学开学摸底考试卷天津专用全解全析docx、新高三摸底2024届新高三-数学开学摸底考试卷天津专用参考答案docx、新高三摸底2024届新高三-数学开学摸底考试卷天津专用考试版A4docx、新高三摸底2024届新高三-数学开学摸底考试卷天津专用考试版A3docx、新高三摸底2024届新高三-数学开学摸底考试卷天津专用答题卡docx等5份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份【新高三摸底】2024届新高三-数学开学摸底考试卷(北京专用),文件包含新高三摸底2024届新高三-数学开学摸底考试卷北京专用解析版docx、新高三摸底2024届新高三-数学开学摸底考试卷北京专用答案及评分标准docx、新高三摸底2024届新高三-数学开学摸底考试卷北京专用考试版docx、新高三摸底2024届新高三-数学开学摸底考试卷北京专用答题卡docx等4份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份【新高三摸底】2024届新高三-数学开学摸底考试卷(上海专用),文件包含新高三摸底2024届新高三-数学开学摸底考试卷上海专用解析版docx、新高三摸底2024届新高三-数学开学摸底考试卷上海专用答案及评分标准docx、新高三摸底2024届新高三-数学开学摸底考试卷上海专用考试版docx、新高三摸底2024届新高三-数学开学摸底考试卷上海专用答题卡docx等4份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。