2025届高考数学一轮复习三年真题汇编专题16双曲线
展开
这是一份2025届高考数学一轮复习三年真题汇编专题16双曲线,文件包含2025届高考一轮复习三年真题汇编专题16双曲线参考答案doc、2025届高考一轮复习三年真题汇编专题16双曲线docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
1、双曲线的定义
(1)平面内与两个定点F1,F2(|F1F2|=2c>0)的距离之差的绝对值为非零常数2a(2a0,c>0.
①当2a|F1F2|时,M点不存在.
2、双曲线的标准方程和几何性质
3、双曲线中的几个常用结论
(1)双曲线的焦点到其渐近线的距离为b.
(2)若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a.
(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为eq \f(2b2,a),异支的弦中最短的为实轴,其长为2a.
(4)设P,A,B是双曲线上的三个不同的点,其中A,B关于原点对称,直线PA,PB斜率存在且不为0,则直线PA与PB的斜率之积为eq \f(b2,a2).
(5)P是双曲线上不同于实轴两端点的任意一点,F1,F2分别为双曲线的左、右焦点,则,其中θ为∠F1PF2.
(6)等轴双曲线
①定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.
②性质:a=b;e=eq \r(2);渐近线互相垂直;等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.
(7)共轭双曲线
①定义:若一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.
②性质:它们有共同的渐近线;它们的四个焦点共圆;它们的离心率的倒数的平方和等于1.
2提升学科能力
一、单选题
1.(2024·全国甲卷理科·高考真题)已知双曲线的上、下焦点分别为,点在该双曲线上,则该双曲线的离心率为( )
A.4B.3C.2D.
2.(2024·天津·高考真题)双曲线的左、右焦点分别为是双曲线右支上一点,且直线的斜率为2.是面积为8的直角三角形,则双曲线的方程为( )
A.B.C.D.
3.(2023·全国乙卷理科·高考真题)设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )
A.B.C.D.
4.(2023·全国甲卷理科·高考真题)已知双曲线的离心率为,C的一条渐近线与圆交于A,B两点,则( )
A.B.C.D.
5.(2023·天津·高考真题)已知双曲线的左、右焦点分别为.过向一条渐近线作垂线,垂足为.若,直线的斜率为,则双曲线的方程为( )
A.B.
C.D.
6.(2022·天津·高考真题)已知抛物线分别是双曲线的左、右焦点,抛物线的准线过双曲线的左焦点,与双曲线的渐近线交于点A,若,则双曲线的标准方程为( )
A.B.
C.D.
二、多选题
7.(2022·全国乙卷理科·高考真题)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )
A.B.C.D.
三、填空题
8.(2023·北京·高考真题)已知双曲线C的焦点为和,离心率为,则C的方程为 .
9.(2024·新课标全国I卷·高考真题)设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为 .
10.(2024·天津·高考真题)若函数恰有一个零点,则的取值范围为 .
11.(2023·新课标全国I卷·高考真题)已知双曲线的左、右焦点分别为.点在上,点在轴上,,则的离心率为 .
12.(2022·浙江·高考真题)已知双曲线的左焦点为F,过F且斜率为的直线交双曲线于点,交双曲线的渐近线于点且.若,则双曲线的离心率是 .
13.(2022·全国甲卷理科·高考真题)若双曲线的渐近线与圆相切,则 .
14.(2022·全国甲卷文科·高考真题)记双曲线的离心率为e,写出满足条件“直线与C无公共点”的e的一个值 .
15.(2022·北京·高考真题)已知双曲线的渐近线方程为,则 .
四、解答题
16.(2024·上海·高考真题)已知双曲线左右顶点分别为,过点的直线交双曲线于两点.
(1)若离心率时,求的值.
(2)若为等腰三角形时,且点在第一象限,求点的坐标.
(3)连接并延长,交双曲线于点,若,求的取值范围.
17.(2023·新课标全国II卷·高考真题)已知双曲线C的中心为坐标原点,左焦点为,离心率为.
(1)求C的方程;
(2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.
18.(2022·新高考全国II卷·高考真题)已知双曲线的右焦点为,渐近线方程为.
(1)求C的方程;
(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:
①M在上;②;③.
注:若选择不同的组合分别解答,则按第一个解答计分.
标准方程
eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)
eq \f(y2,a2)-eq \f(x2,b2)=1(a>0,b>0)
图形
性质
范围
x≥a或x≤-a,y∈R
y≤-a或y≥a,x∈R
对称性
对称轴:坐标轴,对称中心:原点
顶点
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
渐近线
y=±eq \f(b,a)x
y=±eq \f(a,b)x
离心率
e=eq \f(c,a),e∈(1,+∞)
实、虚轴
线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;
线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;
a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
a,b,c的关系
c2=a2+b2(c>a>0,c>b>0)
相关试卷
这是一份专题16 算法初步- 【真题汇编】五年(2019-2023)高考数学真题分项汇编(全国通用),文件包含专题16算法初步-学易金卷五年2019-2023高考数学真题分项汇编原卷版docx、专题16算法初步-学易金卷五年2019-2023高考数学真题分项汇编解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份【专项复习】高考数学 专题13 双曲线 (名校模拟汇编).zip,文件包含专项复习高考数学专题13双曲线名校模拟汇编原卷版docx、专项复习高考数学专题13双曲线名校模拟汇编解析版docx等2份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。
这是一份专题16 统计-2023年高考数学真题专题汇编(新高考卷),文件包含专题16统计原卷版docx、专题16统计解析版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。