- 苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程(知识解读)(原卷版+解析) 试卷 0 次下载
- 苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程概念及解分式方程(专项训练)(原卷版+解析) 试卷 0 次下载
- 苏科版八年级数学下册《同步考点解读•专题训练》专题10.6分式方程应用-销售和方案问题(专项训练)(原卷版+解析) 试卷 0 次下载
- 苏科版八年级数学下册《同步考点解读•专题训练》专题11.1反比例函数(专项训练)(原卷版+解析) 试卷 0 次下载
- 苏科版八年级数学下册《同步考点解读•专题训练》专题12.1二次根式(专项训练)(原卷版+解析) 试卷 0 次下载
苏科版八年级数学下册《同步考点解读•专题训练》专题10.5分式方程应用-工程和行程问题(专项训练)(原卷版+解析)
展开1.(汕尾)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
2.(2021秋•道县期中)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
3.(2022•南岗区校级开学)三~四月的哈尔滨,冰雪消融,大地回春,正是植树好季节,市政有甲、乙两个植树工程队,甲工程队每天比乙工程队多植树20棵,同样植树480棵,甲工程队比乙工程队少用2天完成.
(1)求甲、乙两工程队每天各植树多少棵?
(2)甲、乙两个工程队工作热情高涨,甲工程队每天比原来多植树10%,乙工程队每天比原来多植树20%,现有植树任务不少于1160棵,且乙工程队植树天数是甲工程队植树天数的2倍,则甲工程队至少植树多少天可以完成任务?
4.(2022•玉州区一模)为美化小区环境,物业计划安排甲、乙两个工程队完成小区绿化工作.已知甲工程队每天绿化面积是乙工程队每天绿化面积的2倍,甲工程队单独完成600m2的绿化面积比乙工程队单独完成600m2的绿化面积少用2天.
(1)求甲、乙两工程队每天绿化的面积分别是多少m2;
(2)小区需要绿化的面积为9600m2,物业需付给甲工程队每天绿化费为0.3万元,付给乙工程队每天绿化费为0.2万元,若要使这次的绿化总费用不超过12万元,则至少应安排甲工程队工作多少天?
5.(2022春•江都区校级月考)某公司有960件新产品需经加工后才能投放市场,现有甲、乙两家工厂都想加工加工这批产品.已知甲工厂单独完成这批产品比乙工厂单独完成这批产品多用20天,而甲工厂每天加工数量是乙工厂每天加工的数量的,公司需付甲工厂加工费每天80元,需付乙工厂加工费每天120元.
(1)甲、乙两工厂每天能加工多少件新产品?
(2)公司制定的方案如下:可以由每个厂家单独完成,也可以有两个厂家合作完成.在加工过程中,公司派一名工程师进行技术指导,并担负每天25元的午餐补助,请帮公司需出一种既省时又省钱的加工方案,并说明理由.
6.(2021秋•玉州区期末)在某市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3万元,乙队施工一天需付工程款2.5万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
7.(2021秋•江北区期末)市级重点工程盘溪立交改造正在进行中,某建筑公司承建了修筑其中一段公路的任务,指派甲、乙两队合作,18天可以完成,共需施工费144000元,如果甲、乙两队单独完成此项工程,乙队所用时间是甲队的1.5倍,乙队每天的施工费比甲队每天的施工费少1000元.
(1)甲、乙两队每天的施工费用各需多少元?
(2)甲、乙两队单独完成此项工程,各需多少天?
8.(2021秋•花都区期末)某校推行“新时代好少年•红心向党”主题教育读书工程建设活动,原计划投资10000元建设几间青少年党史“读书吧”,为了保证“读书吧”的建设的质量,实际每间“读书吧”的建设费用增加了10%,实际总投资为15400元,并比原计划多建设了2间党史“读书吧”.
(1)原计划每间党史“读书吧”的建设费用是多少元?
(2)该校实际共建设了多少间青少年党史“读书吧”?
9.(2021秋•东莞市校级期末)某施工队对一段2400米的河堤进行加固,在施工800米后,采用新的施工机器,每天工作的效率比原来提高了25%,共用了26天完成全部工程.
(1)求原来每天加固河堤多少米?
(2)若承包方原来每天支付施工队工资800元,提高工作效率后,每天支付给施工队的工资也增加了25%,那么整个工程完成后承包方需要支付工资多少元?
10.(2021秋•芜湖期末)为积极创建全国文明城市,甲、乙两工程队承包了我市某街道路面改造工程.若由甲、乙两工程队合做20天可以完成;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可以完成.求甲、乙两工程队单独完成此项工程各需要多少天?
11.(2021秋•宁远县校级月考)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
12.(2021•桃江县模拟)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
13.(2021秋•灌阳县期中)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.
(1)求原计划每天生产的零件个数和规定的天数;
(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
14.(2020秋•安丘市期末)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.
15.(2020秋•红谷滩区校级期末)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.
(1)求高铁列车的平均时速;
(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?
16.(2021春•东港市期末)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.
17.(2020秋•白云区期末)一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求前一小时的行驶速度.
18.(2021秋•零陵区期中)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?
19.(2021春•仁寿县期中)动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.
20.(2021•包头)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.
(1)求小刚跑步的平均速度;
(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.
21.(2020秋•朝阳区校级期末)从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为900km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.
22.(2021•黄石模拟)李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.
(1)求李老师步行的平均速度;
(2)请你判断李老师能否按时上班,并说明理由.
23.(2021•长春模拟)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.
(1)求乙骑自行车的速度;
(2)当甲到达学校时,乙同学离学校还有多远?
24.(哈尔滨)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.
(1)求小明步行速度(单位:米/分)是多少;
(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?
25.(2021春•宽甸县校级月考)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小是多少千米?
26.(2021•昆明模拟)李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有48分钟,于是他立即步行(匀速)回家,在家拿道具用了2分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.
(1)李明步行的速度是多少?
(2)李明能否在联欢会开始前赶到学校?
27.(2021秋•宁远县校级月考)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
28.(2021秋•绥宁县期中)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
29.(2022春•北碚区校级期末)甲、乙两人计划开车从A地前往B地,已知A、B两地相距60km,甲的速度是乙的1.5倍,若同时出发,甲比乙早到半小时.
(1)求甲、乙的速度各是多少?(列方程解答)
(2)甲、乙同时出发后,甲在途中发现忘带了物品,于是立刻原速返回A地,取到物品后继续原速前往B地,最后甲在距离B地10km处追上乙,求甲出发多久时发现忘带了物品?
专题10.5 分式方程应用-工程和行程问题(专项训练)
1.(汕尾)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:
﹣=4,
解得:x=50,
经检验x=50是原方程的解,
则甲工程队每天能完成绿化的面积是50×2=100(m2),
答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;
(2)设应安排甲队工作y天,根据题意得:
0.4y+×0.25≤8,
解得:y≥10,
答:至少应安排甲队工作10天.
2.(2021秋•道县期中)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
【解答】解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,
依题意得﹣=10,
解得:x=40.
经检验:x=40是原方程的根,且符合题意.所以1.5x=60.
答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.
3.(2022•南岗区校级开学)三~四月的哈尔滨,冰雪消融,大地回春,正是植树好季节,市政有甲、乙两个植树工程队,甲工程队每天比乙工程队多植树20棵,同样植树480棵,甲工程队比乙工程队少用2天完成.
(1)求甲、乙两工程队每天各植树多少棵?
(2)甲、乙两个工程队工作热情高涨,甲工程队每天比原来多植树10%,乙工程队每天比原来多植树20%,现有植树任务不少于1160棵,且乙工程队植树天数是甲工程队植树天数的2倍,则甲工程队至少植树多少天可以完成任务?
【解答】解:(1)设乙工程队每天植树x棵,则甲工程队每天植树(x+20)棵,
依题意得:﹣=2,
整理得:x2+20x﹣4800=0
解得:x1=60,x2=﹣80,
经检验,x1=60,x2=﹣80均为原方程的解,x2=﹣80不符合题意,舍去,
∴x+20=60+20=80.
答:甲工程队每天植树80棵,乙工程队每天植树60棵.
(2)设甲工程队植树m天,则乙工程队植树2m天,
依题意得:80×(1+10%)m+60×(1+20%)×2m≥1160,
解得:m≥5.
答:甲工程队至少植树5天可以完成任务.
4.(2022•玉州区一模)为美化小区环境,物业计划安排甲、乙两个工程队完成小区绿化工作.已知甲工程队每天绿化面积是乙工程队每天绿化面积的2倍,甲工程队单独完成600m2的绿化面积比乙工程队单独完成600m2的绿化面积少用2天.
(1)求甲、乙两工程队每天绿化的面积分别是多少m2;
(2)小区需要绿化的面积为9600m2,物业需付给甲工程队每天绿化费为0.3万元,付给乙工程队每天绿化费为0.2万元,若要使这次的绿化总费用不超过12万元,则至少应安排甲工程队工作多少天?
【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),
根据题意得,
解得:x=150,
经检验:x=150是原方程的解,
则2x=300.
答:甲工程队每天能完成绿化的面积是300m2,乙工程队每天能完成绿化的面积是150m2,
(2)设甲队工作y天完成:300y(m2),乙队完成工作所需要(天),
根据题意得:0.3y+0.2×≤12,
解得:y≥8.
所以y最小值是8.
答:至少应安排甲队工作8天.
5.(2022春•江都区校级月考)某公司有960件新产品需经加工后才能投放市场,现有甲、乙两家工厂都想加工加工这批产品.已知甲工厂单独完成这批产品比乙工厂单独完成这批产品多用20天,而甲工厂每天加工数量是乙工厂每天加工的数量的,公司需付甲工厂加工费每天80元,需付乙工厂加工费每天120元.
(1)甲、乙两工厂每天能加工多少件新产品?
(2)公司制定的方案如下:可以由每个厂家单独完成,也可以有两个厂家合作完成.在加工过程中,公司派一名工程师进行技术指导,并担负每天25元的午餐补助,请帮公司需出一种既省时又省钱的加工方案,并说明理由.
【解答】解:(1)设乙工厂每天能加工x件新产品,则甲工厂每天能加工x件新产品,
根据题意得:﹣=20,
解得:x=24,
经检验,x=24是原方程的解,且符合题意,
则x=×24=16.
答:乙工厂每天能加工24件新产品,甲工厂每天能加工16件新产品.
(2)选择甲乙两个厂家合作完成,理由如下:
甲工厂独立完成需要的费用为×(80+25)=6300(元);
乙工厂独立完成需要的费用为×(120+25)=5800(元);
甲、乙合作完成需要的费用为×(80+120+25)=5400(元).
∵6300>5800>5400,
∴选择甲、乙两个厂家合作完成省时省钱.
6.(2021秋•玉州区期末)在某市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3万元,乙队施工一天需付工程款2.5万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
【解答】解:(1)设乙队单独完成这项工程需要x天,
依题意得:+=1,
解得:x=90,
经检验,x=90是原方程的解,且符合题意.
答:乙队单独完成这项工程需要90天.
(2)∵60<70<90,
∴共有2种方案可供选择,方案1:甲队单独完成这项工程;方案2:甲乙两队全程合作完成这项工程.
选择方案1所需费用为3×60=180(万元);
选择方案2所需费用为(3+2.5)×=198(万元).
∵180<198,
∴由甲队单独完成该工程省钱.
7.(2021秋•江北区期末)市级重点工程盘溪立交改造正在进行中,某建筑公司承建了修筑其中一段公路的任务,指派甲、乙两队合作,18天可以完成,共需施工费144000元,如果甲、乙两队单独完成此项工程,乙队所用时间是甲队的1.5倍,乙队每天的施工费比甲队每天的施工费少1000元.
(1)甲、乙两队每天的施工费用各需多少元?
(2)甲、乙两队单独完成此项工程,各需多少天?
【解答】解:(1)设甲公司每天的施工费用是y元,那么乙公司每天的施工费用是(y﹣1000)元,
则由题意可得:(y+y﹣1000)×18=144000,
解得:y=4500,
∴y﹣1000=3500,
答:甲公司每天的施工费用是4500元,乙公司每天的施工费用是3500元;
(2)设甲公司单独完成此项工程需x天,
根据题意可得:+=,
解得:x=30,
检验,知x=30符合题意,
∴1.5x=45,
答:甲公司单独完成此项工程需30天,乙公司单独完成此项工程需45天.
8.(2021秋•花都区期末)某校推行“新时代好少年•红心向党”主题教育读书工程建设活动,原计划投资10000元建设几间青少年党史“读书吧”,为了保证“读书吧”的建设的质量,实际每间“读书吧”的建设费用增加了10%,实际总投资为15400元,并比原计划多建设了2间党史“读书吧”.
(1)原计划每间党史“读书吧”的建设费用是多少元?
(2)该校实际共建设了多少间青少年党史“读书吧”?
【解答】解:(1)设原计划每间党史“读书吧”的建设费用是x元,则实际每间党史“读书吧”的建设费用为(1+10%)x元,
根据题意得:﹣=2,
解得:x=2000,
经检验:x=2000是原方程的解,
答:原计划每间党史“读书吧”的建设费用是2000元;
(2)=7,
答:该校实际共建设了7间青少年党史“读书吧”.
9.(2021秋•东莞市校级期末)某施工队对一段2400米的河堤进行加固,在施工800米后,采用新的施工机器,每天工作的效率比原来提高了25%,共用了26天完成全部工程.
(1)求原来每天加固河堤多少米?
(2)若承包方原来每天支付施工队工资800元,提高工作效率后,每天支付给施工队的工资也增加了25%,那么整个工程完成后承包方需要支付工资多少元?
【解答】解:(1)设原来每天加固河堤x米,则采用新的施工机器后每天加固河堤(1+25%)x米,
依题意得:+=26,
解得:x=80,
经检验,x=80是原方程的解,且符合题意.
答:原来每天加固河堤80米.
(2)施工800米所需时间为800÷80=10(天),
∴承包方需要支付工资为800×10+800×(1+25%)×(26﹣10)
=800×10+800×125%×16
=8000+16000
=24000(元).
答:整个工程完成后承包方需要支付工资24000元.
10.(2021秋•芜湖期末)为积极创建全国文明城市,甲、乙两工程队承包了我市某街道路面改造工程.若由甲、乙两工程队合做20天可以完成;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可以完成.求甲、乙两工程队单独完成此项工程各需要多少天?
【解答】解:设甲工程队单独完成此项工程需要x天,则甲工程队的工作效率为,乙工程队的工作效率为(﹣),
依题意得:+10(﹣)=1,
解得:x=60,
经检验,x=60是原方程的解,且符合题意,
∴乙工程队单独完成此项工程需要的天数为1÷(﹣)=1÷(﹣)=30.
11.(2021秋•宁远县校级月考)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:
﹣=4,
解得:x=50,
经检验x=50是原方程的解,
则甲工程队每天能完成绿化的面积是50×2=100(m2),
答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;
(2)设应安排甲队工作y天,根据题意得:
0.4y+×0.25≤8,
解得:y≥10,
答:至少应安排甲队工作10天.
12.(2021•桃江县模拟)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
【解答】解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,
根据题意得:﹣=3,
解得:x=40,
经检验,x=40是原分式方程的解,且符合题意,
∴x=×40=60.
答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.
(2)设安排甲队工作m天,则安排乙队工作天,
根据题意得:7m+5×≤145,
解得:m≥10.
答:至少安排甲队工作10天.
13.(2021秋•灌阳县期中)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.
(1)求原计划每天生产的零件个数和规定的天数;
(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
【解答】解:(1)设原计划每天生产的零件x个,依题意有
=,
解得x=2400,
经检验,x=2400是原方程的根,且符合题意.
∴规定的天数为24000÷2400=10(天).
答:原计划每天生产的零件2400个,规定的天数是10天;
(2)设原计划安排的工人人数为y人,依题意有
[5×20×(1+20%)×+2400]×(10﹣2)=24000,
解得y=480,
经检验,y=480是原方程的根,且符合题意.
答:原计划安排的工人人数为480人.
14.(2020秋•安丘市期末)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.
【解答】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:
﹣=6,
解得:x=50,
经检验x=50是原方程的解,
答:小芳的速度是50米/分钟.
15.(2020秋•红谷滩区校级期末)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.
(1)求高铁列车的平均时速;
(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?
【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,
由题意得,﹣=9,
解得:x=72,
经检验,x=72是原分式方程的解,且符合题意,
则2.5x=180,
答:高铁列车的平均时速为180千米/小时;
(2)630÷180=3.5,
则坐车共需要3.5+1.5=5(小时),
王老师到达会议地点的时间为13点40.
故他能在开会之前到达.
16.(2021春•东港市期末)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.
【解答】解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:
=1++,
解得:x=80,
经检验得:x=80是原方程的根,
答:汽车出发后第1小时内的行驶速度是80千米/小时.
17.(2020秋•白云区期末)一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求前一小时的行驶速度.
【解答】解:设前一小时的行驶速度为xkm/h,根据题意可得:
+1=﹣,
解得:x=60,
检验得:x=60是原方程的根,
答:前一小时的行驶速度为60km/h.
18.(2021秋•零陵区期中)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?
【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,
由题意,得:=,
解得:x=90,
经检验得:x=90是这个分式方程的解.
x+54=144.
答:特快列车的平均速度为90km/h,动车的速度为144km/h.
19.(2021春•仁寿县期中)动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.
【解答】解:设普通列车的速度为为xkm/h,动车的平均速度为1.5xkm/h,
由题意得,﹣=1,
解得:x=120,
经检验,x=120是原分式方程的解,且符合题意.
动车的平均速度=120×1.5=180km/h.
答:该趟动车的平均速度为180km/h.
20.(2021•包头)小刚家到学校的距离是1800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车时间比跑步时间少用了4.5分钟,且骑自行车的平均速度是跑步的平均速度的1.6倍.
(1)求小刚跑步的平均速度;
(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.
【解答】解:(1)设小刚跑步的平均速度为x米/分,则小刚骑自行车的平均速度为1.6x米/分,
根据题意,得,
解得:x=150,
经检验,x=150是所列方程的根,
答:小刚跑步的平均速度为150米/分.
(2)他不能在上课前赶回学校,理由如下:
由(1)得小刚跑步的平均速度为150米/分,
则小刚跑步所用时间为1800÷150=12(分),
骑自行车所用时间为12﹣4.5=7.5(分),
∵在家取作业本和取自行车共用了3分,
∴小刚从开始跑步回家到赶回学校需要12+7.5+3=22.5(分).
又∵22.5>20,
∴小刚不能在上课前赶回学校.
21.(2020秋•朝阳区校级期末)从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为900km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.
【解答】解:设特快列车的平均速度为x km/h,
根据题意可列出方程为=+16,
解得x=90.
检验:当x=90时,2.5x≠0.
所以x=90是方程的解.
答:特快列车的平均速度为90km/h.
22.(2021•黄石模拟)李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.
(1)求李老师步行的平均速度;
(2)请你判断李老师能否按时上班,并说明理由.
【解答】解:(1)设李老师步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,
由题意得,﹣=20,
解得:x=76,
经检验,x=76是原分式方程的解,且符合题意,
则5x=76×5=380,
答:李老师步行的平均速度为76m/分钟,骑电瓶车的平均速度为380m/分;
(2)由(1)得,李老师走回家需要的时间为:=12.5(分钟),
骑车走到学校的时间为:=5,
则李老师走到学校所用的时间为:12.5+5+4=21.5<23,
答:李老师能按时上班.
23.(2021•长春模拟)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.
(1)求乙骑自行车的速度;
(2)当甲到达学校时,乙同学离学校还有多远?
【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,
根据题意得+=﹣2,
解得:x=300米/分钟,
经检验x=300是方程的根,
答:乙骑自行车的速度为300米/分钟;
(2)∵300×2=600米,
答:当甲到达学校时,乙同学离学校还有600米.
24.(哈尔滨)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.
(1)求小明步行速度(单位:米/分)是多少;
(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?
【解答】解:(1)设小明步行的速度是x米/分,由题意得:
,
解得:x=60,
经检验:x=60是原分式方程的解,
答:小明步行的速度是60米/分;
(2)设小明家与图书馆之间的路程是y米,根据题意可得:
,
解得:y≤600,
答:小明家与图书馆之间的路程最多是600米.
25.(2021春•宽甸县校级月考)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小是多少千米?
【解答】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,
根据题意得,﹣=2,
解得:x=90,
经检验,x=90是所列方程的根,
则3x=3×90=270.
答:高速列车平均速度为每小时270千米.
26.(2021•昆明模拟)李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有48分钟,于是他立即步行(匀速)回家,在家拿道具用了2分钟,然后立即骑自行车(匀速)返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.
(1)李明步行的速度是多少?
(2)李明能否在联欢会开始前赶到学校?
【解答】解:(1)设李明步行的速度为x米/分,则骑自行车的速度为3x米/分.
依题意,得:﹣=20,
解得:x=70,
经检验,x=70是原方程的解,且符合题意.
答:李明步行的速度是70米/分.
(2)++2=42(分钟),
∵42<48,
∴李明能在联欢会开始前赶到学校.
27.(2021秋•宁远县校级月考)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,
根据题意得:,
解得x=4
经检验,x=4原方程的根,
答:客车由高速公路从甲地到乙地需4时.
28.(2021秋•绥宁县期中)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
【解答】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,
根据题意得:﹣=80,
解得:t=2.5,
经检验,t=2.5是原分式方程的解,且符合题意,
∴1.4t=3.5.
答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时.
29.(2022春•北碚区校级期末)甲、乙两人计划开车从A地前往B地,已知A、B两地相距60km,甲的速度是乙的1.5倍,若同时出发,甲比乙早到半小时.
(1)求甲、乙的速度各是多少?(列方程解答)
(2)甲、乙同时出发后,甲在途中发现忘带了物品,于是立刻原速返回A地,取到物品后继续原速前往B地,最后甲在距离B地10km处追上乙,求甲出发多久时发现忘带了物品?
【解答】解:(1)设乙的速度是xkm/h,则甲的速度是1.5xkm/h,
依题意得:﹣=,
解得:x=40,
经检验,x=40是原方程的解,且符合题意,
∴1.5x=1.5×40=60.
答:甲的速度是60km/h,乙的速度是40km/h.
(2)设甲出发yh发现忘带了物品,
依题意得:2y+=,
解得:y=.答:甲出发h时发现忘带了物品.
苏科版八年级数学下册《同步考点解读•专题训练》专题10.6分式方程应用-销售和方案问题(专项训练)(原卷版+解析): 这是一份苏科版八年级数学下册《同步考点解读•专题训练》专题10.6分式方程应用-销售和方案问题(专项训练)(原卷版+解析),共25页。试卷主要包含了“芒果正宗,源自田东”等内容,欢迎下载使用。
苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程概念及解分式方程(专项训练)(原卷版+解析): 这是一份苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程概念及解分式方程(专项训练)(原卷版+解析),共11页。试卷主要包含了已知方程,解方程,解分式方程等内容,欢迎下载使用。
苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程(知识解读)(原卷版+解析): 这是一份苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程(知识解读)(原卷版+解析),共22页。