终身会员
搜索
    上传资料 赚现金
    苏科版八年级数学下册《同步考点解读•专题训练》专题10.6分式方程应用-销售和方案问题(专项训练)(原卷版+解析)
    立即下载
    加入资料篮
    苏科版八年级数学下册《同步考点解读•专题训练》专题10.6分式方程应用-销售和方案问题(专项训练)(原卷版+解析)01
    苏科版八年级数学下册《同步考点解读•专题训练》专题10.6分式方程应用-销售和方案问题(专项训练)(原卷版+解析)02
    苏科版八年级数学下册《同步考点解读•专题训练》专题10.6分式方程应用-销售和方案问题(专项训练)(原卷版+解析)03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    苏科版八年级数学下册《同步考点解读•专题训练》专题10.6分式方程应用-销售和方案问题(专项训练)(原卷版+解析)

    展开
    这是一份苏科版八年级数学下册《同步考点解读•专题训练》专题10.6分式方程应用-销售和方案问题(专项训练)(原卷版+解析),共25页。试卷主要包含了“芒果正宗,源自田东”等内容,欢迎下载使用。

    1.(2022春•田东县期末)“芒果正宗,源自田东”.田东的桂七芒果,皮薄肉细,多汁香甜、营养丰富、品质上乘,被誉为“果中一绝,果之上品”.现某芒果园有甲、乙两支专业采摘队,已知甲队比乙队每天多采摘600公斤芒果,甲队采摘28800公斤芒果所用的天数与乙队采摘19200公斤芒果所用的天数相同.问甲、乙两队每天分别可采摘芒果多少公斤?
    2.(2022春•锦州期末)2022年北京冬奥会的吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象,深受大家喜爱.某商店第一次用3600元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3600元购进的数量比第一次少了10件.
    (1)求第一次购进的“冰墩墩”玩具每件的进价是多少元;
    (2)若两次购进的“冰墩墩”玩具每件售价均为80元,求该商店两次购进的“冰墩墩”玩具全部售完的总利润是多少元?
    3.(2022春•大观区校级期末)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.
    (1)求每个甲、乙两种商品的进价分别是多少元?
    (2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?
    4.(2022春•普宁市期末)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
    (1)求每台电冰箱与空调的进价分别是多少?
    (2)现在商城准备一次性购进这两种家电共100台,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,一共有多少种合理的购买方案?
    5.(2022春•市南区期末)某中学举办了以“童心绘未来”为主题绘画比赛.学校计划购买A、B两种学习用品奖励获奖同学,已知购买一个A种学习用品比购买一个B种学习用品多用20元,若用400元购买A种学习用品的数量是用160元购买B种学习用品数量的一半.
    (1)求A、B两种学习用品每件多少元?
    (2)商店给该校购买一个A种学习用品赠送一个B种学习用品的优惠,如果该校需要B种学习用品的个数是A种学习用品个数的2倍还多8个,且该校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A种学习用品?
    6.(2022春•龙岗区期末)为实行乡村振兴计划,某县的果蔬加工公司先后两次购买龙眼,第一次购买龙眼用了56000元;因龙眼大量上市,价格下跌,该公司第二次购买龙眼用了84000元,所购进数量是第一次的2倍,但进货单价比第一次便宜了2000元/吨.
    (1)求该公司第一次购进龙眼多少吨?
    (2)公司计划把两次购买的龙眼加工成龙眼肉和干龙眼,1吨龙眼可加工成龙眼肉0.2吨或干龙眼0.5吨,龙眼肉和干龙眼的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成龙眼肉?
    7.(2021•天宁区校级一模)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
    (1)第一批饮料进货单价多少元?
    (2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
    8.(2021•沙坪坝区校级开学)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.
    (1)该种干果的第一次进价是每千克多少元?
    (2)超市销售这种干果共盈利多少元?
    9.(2021春•滨海县期中)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵
    (1)A,B两种花木的数量分别是多少棵?
    (2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
    10.(2021•中宁县模拟)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
    (1)求甲、乙两种商品的每件进价;
    (2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
    11.(2021春•龙华区校级期中)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.
    (1)求每个甲、乙两种商品的进价分别是多少元?
    (2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?
    (3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?
    12.(2021•郴州)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.
    (1)求A,B奖品的单价;
    (2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?
    13.(2020秋•恩施市期末)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:
    (1)苹果进价为每千克多少元?
    (2)乙超市获利多少元?并比较哪种销售方式更合算.
    14.(2021春•兴庆区校级期中)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:
    (1)求m的值;
    (2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.
    15.(2021•章丘区二模)某手机专卖店的一张进货单上有如下信息:A款手机进货单价比B款手机多800元,花38400元购进A款手机的数量与花28800元购进B款手机的数量相同.
    (1)求A,B两款手机的进货单价分别是多少元?
    (2)某周末两天销售单上的数据,如表所示:
    求A,B两款手机的销售单价分别是多少元?
    (3)根据(1)(2)所给的信息,手机专卖店要花费28000元购进A,B两款手机若干部,问有哪几种进货方案?根据计算说明哪种进货方案获得的总利润最高.
    16.(2021•碧江区 二模)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.
    (1)求购买一个A商品和一个B商品各需要多少元;
    (2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?
    17.(2021•郑州模拟)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.
    ①请问甲、乙两种物品的单价各为多少?
    ②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?
    18.(2021•罗湖区校级开学)某校为了改善办公条件,计划从厂家购买A、B两种型号电脑.已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万购买B种型号电脑的数量相同.
    (1)求A、B两种型号电脑每台价格各为多少万元?
    (2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,其中A种型号电脑至少要购进10台,请问有哪几种购买方案?
    19.(2021春•方城县期中)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.
    (1)篮球和足球的单价各是多少元?
    (2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?
    20.(2021•梧州)某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.
    (1)原来每天生产健身器械多少台?
    (2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?
    21.(2021•罗湖区校级模拟)顺丰快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,已知购买1台甲型机器人比购买1台乙型机器人贵2万元,且用16万元购回乙型机器人的台数与24万元购回甲型机器人的台数相同.
    (1)求甲、乙两种型号的机器人每台的价格各是多少万元;
    (2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?
    污水处理设备
    A型
    B型
    价格(万元/台)
    m
    m﹣3
    月处理污水量(吨/台)
    220
    180
    日期
    A款手机(部)
    B款手机(部)
    销售总额(元)
    星期六
    5
    8
    40100
    星期日
    6
    7
    41100
    专题10.6 分式方程应用-销售和方案问题(专项训练)
    1.(2022春•田东县期末)“芒果正宗,源自田东”.田东的桂七芒果,皮薄肉细,多汁香甜、营养丰富、品质上乘,被誉为“果中一绝,果之上品”.现某芒果园有甲、乙两支专业采摘队,已知甲队比乙队每天多采摘600公斤芒果,甲队采摘28800公斤芒果所用的天数与乙队采摘19200公斤芒果所用的天数相同.问甲、乙两队每天分别可采摘芒果多少公斤?
    【解答】解:设乙队每天可采摘芒果x公斤,则甲队每天可采摘芒果(x+600)公斤,
    依题意得:=,
    解得:x=1200,
    经检验,x=1200是原方程的解,且符合题意,
    ∴x+600=1200+600=1800.
    答:甲队每天可采摘芒果1800公斤,乙队每天可采摘芒果1200公斤.
    2.(2022春•锦州期末)2022年北京冬奥会的吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象,深受大家喜爱.某商店第一次用3600元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3600元购进的数量比第一次少了10件.
    (1)求第一次购进的“冰墩墩”玩具每件的进价是多少元;
    (2)若两次购进的“冰墩墩”玩具每件售价均为80元,求该商店两次购进的“冰墩墩”玩具全部售完的总利润是多少元?
    【解答】解:(1)设第一次购进的“冰墩墩”玩具每件的进价为x元,则第二次购进的“冰墩墩”玩具每件的进价为(1+20%)x元,
    依题意得:﹣=10,
    解得:x=60,
    经检验,x=60是原方程的解,且符合题意.
    答:第一次购进的“冰墩墩”玩具每件的进价为60元.
    (2)第一次购进的“冰墩墩”玩具的数量为3600÷60=60(件),
    第二次购进的“冰墩墩”玩具的数量为3600÷[60×(1+20%)]=50(件).
    80×(60+50)﹣3600﹣3600=1600(元).
    答:两次的总利润为1600元.
    3.(2022春•大观区校级期末)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.
    (1)求每个甲、乙两种商品的进价分别是多少元?
    (2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?
    【解答】解:(1)设每个甲商品的进价为x元,则每个乙商品的进价为(x+2)元,
    依题意得:=,
    解得:x=8,
    经检验,x=8是原方程的解,且符合题意,
    ∴x+2=8+2=10.
    答:每个甲商品的进价为8元,每个乙商品的进价为10元.
    (2)设购进m个乙商品,则购进(3m﹣5)个甲商品,
    依题意得:3m﹣5+m≤95,
    解得:m≤25.
    答:商场最多购进乙商品25个.
    4.(2022春•普宁市期末)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
    (1)求每台电冰箱与空调的进价分别是多少?
    (2)现在商城准备一次性购进这两种家电共100台,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,一共有多少种合理的购买方案?
    【解答】解:(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,
    根据题意得:=,
    解得:x=1600
    经检验,x=1600是原方程的解,且符合题意,
    则x+400=1600+400=2000,
    答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.
    (2)设购进电冰箱m台(m为正整数),这100台家电的销售总利润为y元,
    则y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,
    根据题意得:,
    解得:33≤m≤40,
    ∵m为正整数,
    ∴m=34,35,36,37,38,39,40,
    ∴一共有7种合理的购买方案.
    5.(2022春•市南区期末)某中学举办了以“童心绘未来”为主题绘画比赛.学校计划购买A、B两种学习用品奖励获奖同学,已知购买一个A种学习用品比购买一个B种学习用品多用20元,若用400元购买A种学习用品的数量是用160元购买B种学习用品数量的一半.
    (1)求A、B两种学习用品每件多少元?
    (2)商店给该校购买一个A种学习用品赠送一个B种学习用品的优惠,如果该校需要B种学习用品的个数是A种学习用品个数的2倍还多8个,且该校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A种学习用品?
    【解答】解:(1)设购买一个B种学习用品需要x元,则购买一个A种学习用品需要(x+20)元.
    根据题意得:=×,
    解得:x=5,
    经检验,x=5 是原方程的解,且符合题意,
    则x+20=25.
    答:购买一个A种学习用品需要25元,购买一个B种学习用品需要5元;
    (2)设该校购买A种学习用品个数为a个,则购买B种学习用品的个数是(2a+8﹣a)个.
    由题意得:25a+5(2a+8﹣a)≤670,
    解得:a≤21,
    答:该校最多可购买21个A种学习用品.
    6.(2022春•龙岗区期末)为实行乡村振兴计划,某县的果蔬加工公司先后两次购买龙眼,第一次购买龙眼用了56000元;因龙眼大量上市,价格下跌,该公司第二次购买龙眼用了84000元,所购进数量是第一次的2倍,但进货单价比第一次便宜了2000元/吨.
    (1)求该公司第一次购进龙眼多少吨?
    (2)公司计划把两次购买的龙眼加工成龙眼肉和干龙眼,1吨龙眼可加工成龙眼肉0.2吨或干龙眼0.5吨,龙眼肉和干龙眼的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成龙眼肉?
    【解答】解:(1)设第一次购买龙眼的单价为x元/吨,根据题意得:
    2×=,
    解得:x=8000,
    将x=8000代入得第一次购买龙眼7吨.
    (2)由于第二次购进龙眼数量是第一次购进龙眼数量的二倍,
    则易知第二次购进龙眼14吨,所以两次一共购进7+14=21吨龙眼,
    设把y吨龙眼加工成桂圆肉,则把(21﹣y)吨龙眼加工成龙眼干,
    由题意得:10×0.2y+3×0.5(21﹣y)≥39,
    解得:y≥15,
    ∴至少需要把15吨龙眼加工成桂圆肉,
    7.(2021•天宁区校级一模)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
    (1)第一批饮料进货单价多少元?
    (2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
    【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,
    根据题意得:3•=,
    解得:x=8,
    经检验,x=8是分式方程的解.
    答:第一批饮料进货单价为8元.
    (2)设销售单价为m元,
    根据题意得:200(m﹣8)+600(m﹣10)≥1200,
    解得:m≥11.
    答:销售单价至少为11元.
    8.(2022春•11.(2021•沙坪坝区校级开学)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.
    (1)该种干果的第一次进价是每千克多少元?
    (2)超市销售这种干果共盈利多少元?
    【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,
    由题意,得=2×+300,
    解得x=5,
    经检验x=5是原方程的解.
    答:该种干果的第一次进价是每千克5元;
    (2)[+﹣600]×9+600×9×80%﹣(3000+9000)
    =(600+1500﹣600)×9+4320﹣12000
    =1500×9+4320﹣12000
    =13500+4320﹣12000
    =5820(元).
    答:超市销售这种干果共盈利5820元.
    9.(2021春•滨海县期中)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵
    (1)A,B两种花木的数量分别是多少棵?
    (2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
    【解答】解:(1)设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得:
    x+2x﹣600=6600,
    解得:x=2400,
    2x﹣600=4200,
    答:B花木数量为2400棵,则A花木数量是4200棵;
    (2)设安排a人种植A花木,由题意得:
    =,
    解得:a=14,
    经检验:a=14是原分式方程的解,
    26﹣a=26﹣14=12,
    答:安排14人种植A花木,12人种植B花木.
    10.(2021•中宁县模拟)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
    (1)求甲、乙两种商品的每件进价;
    (2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
    【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.
    根据题意,得,=,
    解得 x=40.
    经检验,x=40是原方程的解.
    答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
    (2)甲乙两种商品的销售量为=50.
    设甲种商品按原销售单价销售a件,则
    (60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,
    解得 a≥20.
    答:甲种商品按原销售单价至少销售20件.
    11.(2021春•龙华区校级期中)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.
    (1)求每个甲、乙两种商品的进价分别是多少元?
    (2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?
    (3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?
    【解答】解:(1)设每件乙种商品的进价为x元,则每件甲种商品的进价为(x﹣2)元,
    根据题意,得=,
    解得:x=10,
    经检验,x=10是原方程的根,
    每件甲种商品的进价为:10﹣2=8.
    答:每件甲种商品的进价为8元,每件乙种商品件的进价为10元.
    (2)设购进乙种商品y个,则购进甲种商品(3y﹣5)个.
    由题意得:3y﹣5+y≤95.
    解得y≤25.
    答:商场最多购进乙商品25个;
    (3)由(2)知,(12﹣8)(3y﹣5)+(15﹣10)y>380,
    解得:y>23.
    ∵y为整数,y≤25,
    ∴y=24或25.
    ∴共有2种方案.
    方案一:购进甲种商品67个,乙商品件24个;
    方案二:购进甲种商品70个,乙种商品25个.
    12.(2021•郴州)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.
    (1)求A,B奖品的单价;
    (2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?
    【解答】解:(1)设A奖品的单价为x元,则B奖品的单价为(x﹣25)元,
    由题意得:=,
    解得:x=40,
    经检验,x=40是原方程的解,
    则x﹣25=15,
    答:A奖品的单价为40元,则B奖品的单价为15元;
    (2)设购买A种奖品的数量为m件,则购买B种奖品的数量为(100﹣m)件,
    由题意得:,
    解得:22.5≤m≤25,
    ∵m为正整数,
    ∴m的值为23,24,25,
    ∴有三种方案:
    ①购买A种奖品23件,B种奖品77件;
    ②购买A种奖品24件,B种奖品76件;
    ③购买A种奖品25件,B种奖品75件.
    13.(2020秋•恩施市期末)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:
    (1)苹果进价为每千克多少元?
    (2)乙超市获利多少元?并比较哪种销售方式更合算.
    【解答】解:(1)设苹果进价为每千克x元,根据题意得:
    400×2x+(1+10%)x(﹣400)﹣3000=2100,
    解得:x=5,
    经检验x=5是原方程的解,
    答:苹果进价为每千克5元.
    (2)由(1)得,每个超市苹果总量为:=600(千克),
    大、小苹果售价分别为10元和5.5元,
    则乙超市获利600×(﹣5)=1650(元),
    ∵甲超市获利2100元,
    ∵2100>1650,
    ∴将苹果按大小分类包装销售,更合算
    14.(2021春•兴庆区校级期中)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:
    (1)求m的值;
    (2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.
    【解答】解:(1)由90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,
    即可得:,
    解得m=18,
    经检验m=18是原方程的解,即m=18;
    (2)设买A型污水处理设备x台,则B型(10﹣x)台,
    根据题意得:18x+15(10﹣x)≤165,
    解得x≤5,由于x是整数,则有6种方案,
    当x=0时,10﹣x=10,月处理污水量为1800吨,
    当x=1时,10﹣x=9,月处理污水量为220+180×9=1840吨,
    当x=2时,10﹣x=8,月处理污水量为220×2+180×8=1880吨,
    当x=3时,10﹣x=7,月处理污水量为220×3+180×7=1920吨,
    当x=4时,10﹣x=6,月处理污水量为220×4+180×6=1960吨,
    当x=5时,10﹣x=5,月处理污水量为220×5+180×5=2000吨,
    答:有6种购买方案,每月最多处理污水量的吨数为2000吨.
    15.(2021•章丘区二模)某手机专卖店的一张进货单上有如下信息:A款手机进货单价比B款手机多800元,花38400元购进A款手机的数量与花28800元购进B款手机的数量相同.
    (1)求A,B两款手机的进货单价分别是多少元?
    (2)某周末两天销售单上的数据,如表所示:
    求A,B两款手机的销售单价分别是多少元?
    (3)根据(1)(2)所给的信息,手机专卖店要花费28000元购进A,B两款手机若干部,问有哪几种进货方案?根据计算说明哪种进货方案获得的总利润最高.
    【解答】解:(1)设B款手机的进货单价是x元,则A款手机的进货单价是(x+800)元,
    根据题意得:=,
    解得:x=2400,
    经检验,x=2400是原方程的解,
    则x+800=2400+800=3200,
    答:A款手机的进货单价是3200元,B款手机的进货单价是2400元;
    (2)设A款手机的销售单价是a元,B款手机的销售单价是b元,
    根据题意得:,
    解得:,
    答:A款手机的销售单价是3700元,B款手机的销售单价是2700元;
    (3)设购买A款手机m部,B款手机n部,
    根据题意,得3200m+2400n=28000,
    化简得,4m+3n=35,
    ∵m、n都是正整数,
    ∴或或,
    即有三种进货方案:
    方案一:购买A款手机2部,B款款手机9部,利润是:(3700﹣3200)×2+(2700﹣2400)×9=3700(元);
    方案二:购买A款手机5部,B款款手机5部,利润是:(3700﹣3200)×5+(2700﹣2400)×5=4000(元);
    方案三:购买A款手机8部,B款款手机1部,利润是:(3700﹣3200)×8+(2700﹣2400)×1=4300(元);
    ∵3700<4000<4300,
    ∴选择方案三获得的总利润最高.
    16.(2021•碧江区 二模)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.
    (1)求购买一个A商品和一个B商品各需要多少元;
    (2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?
    【解答】解:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,
    依题意,得:=,
    解得:x=5,
    经检验,x=5是原方程的解,且符合题意,
    ∴x+10=15.
    答:购买一个A商品需要15元,购买一个B商品需要5元.
    (2)设购买B商品m个,则购买A商品(80﹣m)个,
    依题意,得:,
    解得:15≤m≤16.
    ∵m为整数,
    ∴m=15或16.
    ∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.
    17.(2021•郑州模拟)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.
    ①请问甲、乙两种物品的单价各为多少?
    ②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?
    【解答】解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:

    解得x=90
    经检验,x=90符合题意
    ∴甲种物品的单价为100元,乙种物品的单价为90元.
    ②设购买甲种物品y件,则乙种物品购进(55﹣y)件
    由题意得:5000≤100y+90(55﹣y)≤5050
    解得5≤y≤10
    ∴共有6种选购方案.
    18.(2021•罗湖区校级开学)某校为了改善办公条件,计划从厂家购买A、B两种型号电脑.已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万购买B种型号电脑的数量相同.
    (1)求A、B两种型号电脑每台价格各为多少万元?
    (2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,其中A种型号电脑至少要购进10台,请问有哪几种购买方案?
    【解答】解:(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.
    根据题意得:,
    解得:X=0.5.
    经检验:x=0.5是原方程的解,x﹣0.1=0.4
    答:A、B两种型号电脑每台价格分别是0.5万元和0.4万元.
    (2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.
    根据题意得:0.5y+0.4(20﹣y)≤9.2.
    解得:y≤12,
    又∵A种型号电脑至少要购进10台,∴10≤y≤12 y的整数解为10、11、12.
    ∴有3种方案.
    即:购买A种型号电脑10台、购买B种型号电脑10台;
    购买A种型号电脑11台、购买B种型号电脑9台;
    购买A种型号电脑12台、购买B种型号电脑8台.
    19.(2021春•方城县期中)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.
    (1)篮球和足球的单价各是多少元?
    (2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?
    【解答】解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:
    =,
    解得:x=60,
    经检验:x=60是原分式方程的解,
    则x+40=100,
    答:篮球和足球的单价各是100元,60元;
    (2)设恰好用完1000元,可购买篮球m个和购买足球n个,
    由题意得:100m+60n=1000,
    整理得:m=10﹣n,
    ∵m、n都是正整数,
    ∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;
    ∴有三种方案:
    ①购买篮球7个,购买足球5个;
    ②购买篮球4个,购买足球10个;
    ③购买篮球1个,购买足球15个.
    20.(2021•梧州)某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.
    (1)原来每天生产健身器械多少台?
    (2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?
    【解答】解:(1)设原来每天生产健身器械x台,则提高工作效率后每天生产健身器械1.4x台,
    依题意得:+=8,
    解得:x=50,
    经检验,x=50是原方程的解,且符合题意.
    答:原来每天生产健身器械50台.
    (2)设使用m辆大货车,使用n辆小货车,
    ∵同时使用大、小货车一次完成这批健身器械的运输,
    ∴50m+20n≥500,
    ∴n≥25﹣m.
    又∵运输公司大货车数量不足10辆,且运输总费用不多于16000元,
    ∴,即,
    解得:8≤m<10.
    又∵m为整数,
    ∴m可以为8,9.
    当m=8时,n≥25﹣m=25﹣×8=5;
    当m=9时,n≥25﹣m=25﹣×9=,
    又∵n为整数,
    ∴n的最小值为3.
    ∴共有2种运输方案,
    方案1:使用8辆大货车,5辆小货车;
    方案2:使用9辆大货车,3辆小货车.
    方案1所需费用为1500×8+800×5=16000(元),
    方案2所需费用为1500×9+800×3=15900(元).
    ∵16000>15900,
    ∴运输方案2的费用最低,最低运输费用是15900元.
    21.(2021•罗湖区校级模拟)顺丰快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,已知购买1台甲型机器人比购买1台乙型机器人贵2万元,且用16万元购回乙型机器人的台数与24万元购回甲型机器人的台数相同.
    (1)求甲、乙两种型号的机器人每台的价格各是多少万元;
    (2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?
    【解答】解:(1)设甲种型号机器人每台的价格是x万元,则乙种型号机器人每台的价格是(x﹣2)万元,
    根据题意得:
    =,
    解得:x=6,
    经检验,x=6是分式方程的解,且符合实际意义,
    6﹣2=4(万元),
    答:甲种型号机器人每台的价格是6万元,则乙种型号机器人每台的价格是4万元,
    (2)设购买甲种机器人m台,则购买乙种机器人(8﹣m)台,
    根据题意得:

    解得:1.5≤m≤4.5,
    当m=2时,8﹣m=6,
    即购买甲种机器人2台,乙种机器人6台,费用为:6×2+4×6=36(万元),
    当m=3,8﹣m=5,
    即购买甲种机器人3台,乙种机器人5台,费用为:6×3+4×5=38(万元),
    当m=4,8﹣m=4,
    即购买甲种机器人4台,乙种机器人4台,费用为:6×4+4×4=40(万元),
    综上可知:购买甲种机器人2台,乙种机器人6台费用最低,最低费用是36万元,
    答:该公司有三种购买方案,分别是:①购买甲种机器人2台,乙种机器人6台,②购买甲种机器人3台,乙种机器人5台,③购买甲种机器人4台,乙种机器人4台,
    其中购买甲种机器人2台,乙种机器人6台费用最低,最低费用是36万元.
    污水处理设备
    A型
    B型
    价格(万元/台)
    m
    m﹣3
    月处理污水量(吨/台)
    220
    180
    日期
    A款手机(部)
    B款手机(部)
    销售总额(元)
    星期六
    5
    8
    40100
    星期日
    6
    7
    41100
    相关试卷

    苏科版八年级数学下册《同步考点解读•专题训练》专题10.5分式方程应用-工程和行程问题(专项训练)(原卷版+解析): 这是一份苏科版八年级数学下册《同步考点解读•专题训练》专题10.5分式方程应用-工程和行程问题(专项训练)(原卷版+解析),共26页。试卷主要包含了4万元,乙队为0,5,,5+3=22等内容,欢迎下载使用。

    苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程概念及解分式方程(专项训练)(原卷版+解析): 这是一份苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程概念及解分式方程(专项训练)(原卷版+解析),共11页。试卷主要包含了已知方程,解方程,解分式方程等内容,欢迎下载使用。

    苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程(知识解读)(原卷版+解析): 这是一份苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程(知识解读)(原卷版+解析),共22页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        苏科版八年级数学下册《同步考点解读•专题训练》专题10.6分式方程应用-销售和方案问题(专项训练)(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map