- 苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程概念及解分式方程(专项训练)(原卷版+解析) 试卷 0 次下载
- 苏科版八年级数学下册《同步考点解读•专题训练》专题10.5分式方程应用-工程和行程问题(专项训练)(原卷版+解析) 试卷 0 次下载
- 苏科版八年级数学下册《同步考点解读•专题训练》专题11.1反比例函数(专项训练)(原卷版+解析) 试卷 0 次下载
- 苏科版八年级数学下册《同步考点解读•专题训练》专题12.1二次根式(专项训练)(原卷版+解析) 试卷 0 次下载
- 苏科版八年级数学下册《同步考点解读•专题训练》专题12.2二次根式的乘除(专项训练)(原卷版+解析) 试卷 0 次下载
苏科版八年级数学下册《同步考点解读•专题训练》专题10.6分式方程应用-销售和方案问题(专项训练)(原卷版+解析)
展开1.(2022春•田东县期末)“芒果正宗,源自田东”.田东的桂七芒果,皮薄肉细,多汁香甜、营养丰富、品质上乘,被誉为“果中一绝,果之上品”.现某芒果园有甲、乙两支专业采摘队,已知甲队比乙队每天多采摘600公斤芒果,甲队采摘28800公斤芒果所用的天数与乙队采摘19200公斤芒果所用的天数相同.问甲、乙两队每天分别可采摘芒果多少公斤?
2.(2022春•锦州期末)2022年北京冬奥会的吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象,深受大家喜爱.某商店第一次用3600元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3600元购进的数量比第一次少了10件.
(1)求第一次购进的“冰墩墩”玩具每件的进价是多少元;
(2)若两次购进的“冰墩墩”玩具每件售价均为80元,求该商店两次购进的“冰墩墩”玩具全部售完的总利润是多少元?
3.(2022春•大观区校级期末)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.
(1)求每个甲、乙两种商品的进价分别是多少元?
(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?
4.(2022春•普宁市期末)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商城准备一次性购进这两种家电共100台,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,一共有多少种合理的购买方案?
5.(2022春•市南区期末)某中学举办了以“童心绘未来”为主题绘画比赛.学校计划购买A、B两种学习用品奖励获奖同学,已知购买一个A种学习用品比购买一个B种学习用品多用20元,若用400元购买A种学习用品的数量是用160元购买B种学习用品数量的一半.
(1)求A、B两种学习用品每件多少元?
(2)商店给该校购买一个A种学习用品赠送一个B种学习用品的优惠,如果该校需要B种学习用品的个数是A种学习用品个数的2倍还多8个,且该校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A种学习用品?
6.(2022春•龙岗区期末)为实行乡村振兴计划,某县的果蔬加工公司先后两次购买龙眼,第一次购买龙眼用了56000元;因龙眼大量上市,价格下跌,该公司第二次购买龙眼用了84000元,所购进数量是第一次的2倍,但进货单价比第一次便宜了2000元/吨.
(1)求该公司第一次购进龙眼多少吨?
(2)公司计划把两次购买的龙眼加工成龙眼肉和干龙眼,1吨龙眼可加工成龙眼肉0.2吨或干龙眼0.5吨,龙眼肉和干龙眼的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成龙眼肉?
7.(2021•天宁区校级一模)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
8.(2021•沙坪坝区校级开学)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.
(1)该种干果的第一次进价是每千克多少元?
(2)超市销售这种干果共盈利多少元?
9.(2021春•滨海县期中)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
10.(2021•中宁县模拟)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
11.(2021春•龙华区校级期中)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.
(1)求每个甲、乙两种商品的进价分别是多少元?
(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?
(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?
12.(2021•郴州)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.
(1)求A,B奖品的单价;
(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?
13.(2020秋•恩施市期末)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:
(1)苹果进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.
14.(2021春•兴庆区校级期中)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:
(1)求m的值;
(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.
15.(2021•章丘区二模)某手机专卖店的一张进货单上有如下信息:A款手机进货单价比B款手机多800元,花38400元购进A款手机的数量与花28800元购进B款手机的数量相同.
(1)求A,B两款手机的进货单价分别是多少元?
(2)某周末两天销售单上的数据,如表所示:
求A,B两款手机的销售单价分别是多少元?
(3)根据(1)(2)所给的信息,手机专卖店要花费28000元购进A,B两款手机若干部,问有哪几种进货方案?根据计算说明哪种进货方案获得的总利润最高.
16.(2021•碧江区 二模)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.
(1)求购买一个A商品和一个B商品各需要多少元;
(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?
17.(2021•郑州模拟)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.
①请问甲、乙两种物品的单价各为多少?
②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?
18.(2021•罗湖区校级开学)某校为了改善办公条件,计划从厂家购买A、B两种型号电脑.已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万购买B种型号电脑的数量相同.
(1)求A、B两种型号电脑每台价格各为多少万元?
(2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,其中A种型号电脑至少要购进10台,请问有哪几种购买方案?
19.(2021春•方城县期中)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.
(1)篮球和足球的单价各是多少元?
(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?
20.(2021•梧州)某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.
(1)原来每天生产健身器械多少台?
(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?
21.(2021•罗湖区校级模拟)顺丰快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,已知购买1台甲型机器人比购买1台乙型机器人贵2万元,且用16万元购回乙型机器人的台数与24万元购回甲型机器人的台数相同.
(1)求甲、乙两种型号的机器人每台的价格各是多少万元;
(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?
污水处理设备
A型
B型
价格(万元/台)
m
m﹣3
月处理污水量(吨/台)
220
180
日期
A款手机(部)
B款手机(部)
销售总额(元)
星期六
5
8
40100
星期日
6
7
41100
专题10.6 分式方程应用-销售和方案问题(专项训练)
1.(2022春•田东县期末)“芒果正宗,源自田东”.田东的桂七芒果,皮薄肉细,多汁香甜、营养丰富、品质上乘,被誉为“果中一绝,果之上品”.现某芒果园有甲、乙两支专业采摘队,已知甲队比乙队每天多采摘600公斤芒果,甲队采摘28800公斤芒果所用的天数与乙队采摘19200公斤芒果所用的天数相同.问甲、乙两队每天分别可采摘芒果多少公斤?
【解答】解:设乙队每天可采摘芒果x公斤,则甲队每天可采摘芒果(x+600)公斤,
依题意得:=,
解得:x=1200,
经检验,x=1200是原方程的解,且符合题意,
∴x+600=1200+600=1800.
答:甲队每天可采摘芒果1800公斤,乙队每天可采摘芒果1200公斤.
2.(2022春•锦州期末)2022年北京冬奥会的吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象,深受大家喜爱.某商店第一次用3600元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3600元购进的数量比第一次少了10件.
(1)求第一次购进的“冰墩墩”玩具每件的进价是多少元;
(2)若两次购进的“冰墩墩”玩具每件售价均为80元,求该商店两次购进的“冰墩墩”玩具全部售完的总利润是多少元?
【解答】解:(1)设第一次购进的“冰墩墩”玩具每件的进价为x元,则第二次购进的“冰墩墩”玩具每件的进价为(1+20%)x元,
依题意得:﹣=10,
解得:x=60,
经检验,x=60是原方程的解,且符合题意.
答:第一次购进的“冰墩墩”玩具每件的进价为60元.
(2)第一次购进的“冰墩墩”玩具的数量为3600÷60=60(件),
第二次购进的“冰墩墩”玩具的数量为3600÷[60×(1+20%)]=50(件).
80×(60+50)﹣3600﹣3600=1600(元).
答:两次的总利润为1600元.
3.(2022春•大观区校级期末)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.
(1)求每个甲、乙两种商品的进价分别是多少元?
(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?
【解答】解:(1)设每个甲商品的进价为x元,则每个乙商品的进价为(x+2)元,
依题意得:=,
解得:x=8,
经检验,x=8是原方程的解,且符合题意,
∴x+2=8+2=10.
答:每个甲商品的进价为8元,每个乙商品的进价为10元.
(2)设购进m个乙商品,则购进(3m﹣5)个甲商品,
依题意得:3m﹣5+m≤95,
解得:m≤25.
答:商场最多购进乙商品25个.
4.(2022春•普宁市期末)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商城准备一次性购进这两种家电共100台,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,一共有多少种合理的购买方案?
【解答】解:(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,
根据题意得:=,
解得:x=1600
经检验,x=1600是原方程的解,且符合题意,
则x+400=1600+400=2000,
答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.
(2)设购进电冰箱m台(m为正整数),这100台家电的销售总利润为y元,
则y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,
根据题意得:,
解得:33≤m≤40,
∵m为正整数,
∴m=34,35,36,37,38,39,40,
∴一共有7种合理的购买方案.
5.(2022春•市南区期末)某中学举办了以“童心绘未来”为主题绘画比赛.学校计划购买A、B两种学习用品奖励获奖同学,已知购买一个A种学习用品比购买一个B种学习用品多用20元,若用400元购买A种学习用品的数量是用160元购买B种学习用品数量的一半.
(1)求A、B两种学习用品每件多少元?
(2)商店给该校购买一个A种学习用品赠送一个B种学习用品的优惠,如果该校需要B种学习用品的个数是A种学习用品个数的2倍还多8个,且该校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A种学习用品?
【解答】解:(1)设购买一个B种学习用品需要x元,则购买一个A种学习用品需要(x+20)元.
根据题意得:=×,
解得:x=5,
经检验,x=5 是原方程的解,且符合题意,
则x+20=25.
答:购买一个A种学习用品需要25元,购买一个B种学习用品需要5元;
(2)设该校购买A种学习用品个数为a个,则购买B种学习用品的个数是(2a+8﹣a)个.
由题意得:25a+5(2a+8﹣a)≤670,
解得:a≤21,
答:该校最多可购买21个A种学习用品.
6.(2022春•龙岗区期末)为实行乡村振兴计划,某县的果蔬加工公司先后两次购买龙眼,第一次购买龙眼用了56000元;因龙眼大量上市,价格下跌,该公司第二次购买龙眼用了84000元,所购进数量是第一次的2倍,但进货单价比第一次便宜了2000元/吨.
(1)求该公司第一次购进龙眼多少吨?
(2)公司计划把两次购买的龙眼加工成龙眼肉和干龙眼,1吨龙眼可加工成龙眼肉0.2吨或干龙眼0.5吨,龙眼肉和干龙眼的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成龙眼肉?
【解答】解:(1)设第一次购买龙眼的单价为x元/吨,根据题意得:
2×=,
解得:x=8000,
将x=8000代入得第一次购买龙眼7吨.
(2)由于第二次购进龙眼数量是第一次购进龙眼数量的二倍,
则易知第二次购进龙眼14吨,所以两次一共购进7+14=21吨龙眼,
设把y吨龙眼加工成桂圆肉,则把(21﹣y)吨龙眼加工成龙眼干,
由题意得:10×0.2y+3×0.5(21﹣y)≥39,
解得:y≥15,
∴至少需要把15吨龙眼加工成桂圆肉,
7.(2021•天宁区校级一模)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.
(1)第一批饮料进货单价多少元?
(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,
根据题意得:3•=,
解得:x=8,
经检验,x=8是分式方程的解.
答:第一批饮料进货单价为8元.
(2)设销售单价为m元,
根据题意得:200(m﹣8)+600(m﹣10)≥1200,
解得:m≥11.
答:销售单价至少为11元.
8.(2022春•11.(2021•沙坪坝区校级开学)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.
(1)该种干果的第一次进价是每千克多少元?
(2)超市销售这种干果共盈利多少元?
【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,
由题意,得=2×+300,
解得x=5,
经检验x=5是原方程的解.
答:该种干果的第一次进价是每千克5元;
(2)[+﹣600]×9+600×9×80%﹣(3000+9000)
=(600+1500﹣600)×9+4320﹣12000
=1500×9+4320﹣12000
=13500+4320﹣12000
=5820(元).
答:超市销售这种干果共盈利5820元.
9.(2021春•滨海县期中)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
【解答】解:(1)设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得:
x+2x﹣600=6600,
解得:x=2400,
2x﹣600=4200,
答:B花木数量为2400棵,则A花木数量是4200棵;
(2)设安排a人种植A花木,由题意得:
=,
解得:a=14,
经检验:a=14是原分式方程的解,
26﹣a=26﹣14=12,
答:安排14人种植A花木,12人种植B花木.
10.(2021•中宁县模拟)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.
根据题意,得,=,
解得 x=40.
经检验,x=40是原方程的解.
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
(2)甲乙两种商品的销售量为=50.
设甲种商品按原销售单价销售a件,则
(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,
解得 a≥20.
答:甲种商品按原销售单价至少销售20件.
11.(2021春•龙华区校级期中)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.
(1)求每个甲、乙两种商品的进价分别是多少元?
(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?
(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?
【解答】解:(1)设每件乙种商品的进价为x元,则每件甲种商品的进价为(x﹣2)元,
根据题意,得=,
解得:x=10,
经检验,x=10是原方程的根,
每件甲种商品的进价为:10﹣2=8.
答:每件甲种商品的进价为8元,每件乙种商品件的进价为10元.
(2)设购进乙种商品y个,则购进甲种商品(3y﹣5)个.
由题意得:3y﹣5+y≤95.
解得y≤25.
答:商场最多购进乙商品25个;
(3)由(2)知,(12﹣8)(3y﹣5)+(15﹣10)y>380,
解得:y>23.
∵y为整数,y≤25,
∴y=24或25.
∴共有2种方案.
方案一:购进甲种商品67个,乙商品件24个;
方案二:购进甲种商品70个,乙种商品25个.
12.(2021•郴州)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.
(1)求A,B奖品的单价;
(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?
【解答】解:(1)设A奖品的单价为x元,则B奖品的单价为(x﹣25)元,
由题意得:=,
解得:x=40,
经检验,x=40是原方程的解,
则x﹣25=15,
答:A奖品的单价为40元,则B奖品的单价为15元;
(2)设购买A种奖品的数量为m件,则购买B种奖品的数量为(100﹣m)件,
由题意得:,
解得:22.5≤m≤25,
∵m为正整数,
∴m的值为23,24,25,
∴有三种方案:
①购买A种奖品23件,B种奖品77件;
②购买A种奖品24件,B种奖品76件;
③购买A种奖品25件,B种奖品75件.
13.(2020秋•恩施市期末)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:
(1)苹果进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.
【解答】解:(1)设苹果进价为每千克x元,根据题意得:
400×2x+(1+10%)x(﹣400)﹣3000=2100,
解得:x=5,
经检验x=5是原方程的解,
答:苹果进价为每千克5元.
(2)由(1)得,每个超市苹果总量为:=600(千克),
大、小苹果售价分别为10元和5.5元,
则乙超市获利600×(﹣5)=1650(元),
∵甲超市获利2100元,
∵2100>1650,
∴将苹果按大小分类包装销售,更合算
14.(2021春•兴庆区校级期中)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:
(1)求m的值;
(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.
【解答】解:(1)由90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,
即可得:,
解得m=18,
经检验m=18是原方程的解,即m=18;
(2)设买A型污水处理设备x台,则B型(10﹣x)台,
根据题意得:18x+15(10﹣x)≤165,
解得x≤5,由于x是整数,则有6种方案,
当x=0时,10﹣x=10,月处理污水量为1800吨,
当x=1时,10﹣x=9,月处理污水量为220+180×9=1840吨,
当x=2时,10﹣x=8,月处理污水量为220×2+180×8=1880吨,
当x=3时,10﹣x=7,月处理污水量为220×3+180×7=1920吨,
当x=4时,10﹣x=6,月处理污水量为220×4+180×6=1960吨,
当x=5时,10﹣x=5,月处理污水量为220×5+180×5=2000吨,
答:有6种购买方案,每月最多处理污水量的吨数为2000吨.
15.(2021•章丘区二模)某手机专卖店的一张进货单上有如下信息:A款手机进货单价比B款手机多800元,花38400元购进A款手机的数量与花28800元购进B款手机的数量相同.
(1)求A,B两款手机的进货单价分别是多少元?
(2)某周末两天销售单上的数据,如表所示:
求A,B两款手机的销售单价分别是多少元?
(3)根据(1)(2)所给的信息,手机专卖店要花费28000元购进A,B两款手机若干部,问有哪几种进货方案?根据计算说明哪种进货方案获得的总利润最高.
【解答】解:(1)设B款手机的进货单价是x元,则A款手机的进货单价是(x+800)元,
根据题意得:=,
解得:x=2400,
经检验,x=2400是原方程的解,
则x+800=2400+800=3200,
答:A款手机的进货单价是3200元,B款手机的进货单价是2400元;
(2)设A款手机的销售单价是a元,B款手机的销售单价是b元,
根据题意得:,
解得:,
答:A款手机的销售单价是3700元,B款手机的销售单价是2700元;
(3)设购买A款手机m部,B款手机n部,
根据题意,得3200m+2400n=28000,
化简得,4m+3n=35,
∵m、n都是正整数,
∴或或,
即有三种进货方案:
方案一:购买A款手机2部,B款款手机9部,利润是:(3700﹣3200)×2+(2700﹣2400)×9=3700(元);
方案二:购买A款手机5部,B款款手机5部,利润是:(3700﹣3200)×5+(2700﹣2400)×5=4000(元);
方案三:购买A款手机8部,B款款手机1部,利润是:(3700﹣3200)×8+(2700﹣2400)×1=4300(元);
∵3700<4000<4300,
∴选择方案三获得的总利润最高.
16.(2021•碧江区 二模)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.
(1)求购买一个A商品和一个B商品各需要多少元;
(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?
【解答】解:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,
依题意,得:=,
解得:x=5,
经检验,x=5是原方程的解,且符合题意,
∴x+10=15.
答:购买一个A商品需要15元,购买一个B商品需要5元.
(2)设购买B商品m个,则购买A商品(80﹣m)个,
依题意,得:,
解得:15≤m≤16.
∵m为整数,
∴m=15或16.
∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.
17.(2021•郑州模拟)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.
①请问甲、乙两种物品的单价各为多少?
②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?
【解答】解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:
=
解得x=90
经检验,x=90符合题意
∴甲种物品的单价为100元,乙种物品的单价为90元.
②设购买甲种物品y件,则乙种物品购进(55﹣y)件
由题意得:5000≤100y+90(55﹣y)≤5050
解得5≤y≤10
∴共有6种选购方案.
18.(2021•罗湖区校级开学)某校为了改善办公条件,计划从厂家购买A、B两种型号电脑.已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万购买B种型号电脑的数量相同.
(1)求A、B两种型号电脑每台价格各为多少万元?
(2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,其中A种型号电脑至少要购进10台,请问有哪几种购买方案?
【解答】解:(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.
根据题意得:,
解得:X=0.5.
经检验:x=0.5是原方程的解,x﹣0.1=0.4
答:A、B两种型号电脑每台价格分别是0.5万元和0.4万元.
(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.
根据题意得:0.5y+0.4(20﹣y)≤9.2.
解得:y≤12,
又∵A种型号电脑至少要购进10台,∴10≤y≤12 y的整数解为10、11、12.
∴有3种方案.
即:购买A种型号电脑10台、购买B种型号电脑10台;
购买A种型号电脑11台、购买B种型号电脑9台;
购买A种型号电脑12台、购买B种型号电脑8台.
19.(2021春•方城县期中)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.
(1)篮球和足球的单价各是多少元?
(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?
【解答】解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:
=,
解得:x=60,
经检验:x=60是原分式方程的解,
则x+40=100,
答:篮球和足球的单价各是100元,60元;
(2)设恰好用完1000元,可购买篮球m个和购买足球n个,
由题意得:100m+60n=1000,
整理得:m=10﹣n,
∵m、n都是正整数,
∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;
∴有三种方案:
①购买篮球7个,购买足球5个;
②购买篮球4个,购买足球10个;
③购买篮球1个,购买足球15个.
20.(2021•梧州)某工厂急需生产一批健身器械共500台,送往销售点出售.当生产150台后,接到通知,要求提前完成任务,因而接下来的时间里每天生产的台数提高到原来的1.4倍,一共用8天刚好完成任务.
(1)原来每天生产健身器械多少台?
(2)运输公司大货车数量不足10辆,小货车数量充足,计划同时使用大、小货车一次完成这批健身器械的运输.已知每辆大货车一次可以运输健身器械50台,每辆车需要费用1500元;每辆小货车一次可以运输健身器械20台,每辆车需要费用800元.在运输总费用不多于16000元的前提下,请写出所有符合题意的运输方案?哪种运输方案的费用最低,最低运输费用是多少?
【解答】解:(1)设原来每天生产健身器械x台,则提高工作效率后每天生产健身器械1.4x台,
依题意得:+=8,
解得:x=50,
经检验,x=50是原方程的解,且符合题意.
答:原来每天生产健身器械50台.
(2)设使用m辆大货车,使用n辆小货车,
∵同时使用大、小货车一次完成这批健身器械的运输,
∴50m+20n≥500,
∴n≥25﹣m.
又∵运输公司大货车数量不足10辆,且运输总费用不多于16000元,
∴,即,
解得:8≤m<10.
又∵m为整数,
∴m可以为8,9.
当m=8时,n≥25﹣m=25﹣×8=5;
当m=9时,n≥25﹣m=25﹣×9=,
又∵n为整数,
∴n的最小值为3.
∴共有2种运输方案,
方案1:使用8辆大货车,5辆小货车;
方案2:使用9辆大货车,3辆小货车.
方案1所需费用为1500×8+800×5=16000(元),
方案2所需费用为1500×9+800×3=15900(元).
∵16000>15900,
∴运输方案2的费用最低,最低运输费用是15900元.
21.(2021•罗湖区校级模拟)顺丰快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,已知购买1台甲型机器人比购买1台乙型机器人贵2万元,且用16万元购回乙型机器人的台数与24万元购回甲型机器人的台数相同.
(1)求甲、乙两种型号的机器人每台的价格各是多少万元;
(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?
【解答】解:(1)设甲种型号机器人每台的价格是x万元,则乙种型号机器人每台的价格是(x﹣2)万元,
根据题意得:
=,
解得:x=6,
经检验,x=6是分式方程的解,且符合实际意义,
6﹣2=4(万元),
答:甲种型号机器人每台的价格是6万元,则乙种型号机器人每台的价格是4万元,
(2)设购买甲种机器人m台,则购买乙种机器人(8﹣m)台,
根据题意得:
,
解得:1.5≤m≤4.5,
当m=2时,8﹣m=6,
即购买甲种机器人2台,乙种机器人6台,费用为:6×2+4×6=36(万元),
当m=3,8﹣m=5,
即购买甲种机器人3台,乙种机器人5台,费用为:6×3+4×5=38(万元),
当m=4,8﹣m=4,
即购买甲种机器人4台,乙种机器人4台,费用为:6×4+4×4=40(万元),
综上可知:购买甲种机器人2台,乙种机器人6台费用最低,最低费用是36万元,
答:该公司有三种购买方案,分别是:①购买甲种机器人2台,乙种机器人6台,②购买甲种机器人3台,乙种机器人5台,③购买甲种机器人4台,乙种机器人4台,
其中购买甲种机器人2台,乙种机器人6台费用最低,最低费用是36万元.
污水处理设备
A型
B型
价格(万元/台)
m
m﹣3
月处理污水量(吨/台)
220
180
日期
A款手机(部)
B款手机(部)
销售总额(元)
星期六
5
8
40100
星期日
6
7
41100
苏科版八年级数学下册《同步考点解读•专题训练》专题10.5分式方程应用-工程和行程问题(专项训练)(原卷版+解析): 这是一份苏科版八年级数学下册《同步考点解读•专题训练》专题10.5分式方程应用-工程和行程问题(专项训练)(原卷版+解析),共26页。试卷主要包含了4万元,乙队为0,5,,5+3=22等内容,欢迎下载使用。
苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程概念及解分式方程(专项训练)(原卷版+解析): 这是一份苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程概念及解分式方程(专项训练)(原卷版+解析),共11页。试卷主要包含了已知方程,解方程,解分式方程等内容,欢迎下载使用。
苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程(知识解读)(原卷版+解析): 这是一份苏科版八年级数学下册《同步考点解读•专题训练》专题10.4分式方程(知识解读)(原卷版+解析),共22页。