专题10 圆锥曲线(原卷版+解析版)【好题汇编】2024年高考真题和模拟题数学分类汇编(全国通用)
展开1.(新课标全国Ⅱ卷)已知曲线C:(),从C上任意一点P向x轴作垂线段,为垂足,则线段的中点M的轨迹方程为( )
A.()B.()
C.()D.()
2.(全国甲卷数学(理))已知双曲线的上、下焦点分别为,点在该双曲线上,则该双曲线的离心率为( )
A.4B.3C.2D.
3.(新高考天津卷)双曲线的左、右焦点分别为是双曲线右支上一点,且直线的斜率为2.是面积为8的直角三角形,则双曲线的方程为( )
A.B.C.D.
4.(新课标全国Ⅰ卷)(多选)造型可以做成美丽的丝带,将其看作图中曲线C的一部分.已知C过坐标原点O.且C上的点满足横坐标大于,到点的距离与到定直线的距离之积为4,则( )
A.B.点在C上
C.C在第一象限的点的纵坐标的最大值为1D.当点在C上时,
5.(新课标全国Ⅱ卷)(多选)抛物线C:的准线为l,P为C上的动点,过P作的一条切线,Q为切点,过P作l的垂线,垂足为B,则( )
A.l与相切
B.当P,A,B三点共线时,
C.当时,
D.满足的点有且仅有2个
6.(新课标全国Ⅰ卷)设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为 .
7.(新高考北京卷)已知抛物线,则焦点坐标为 .
8.(新高考北京卷)已知双曲线,则过且和双曲线只有一个交点的直线的斜率为 .
9.(新高考天津卷)的圆心与抛物线的焦点重合,为两曲线的交点,则原点到直线的距离为 .
10.(新高考上海卷)已知抛物线上有一点到准线的距离为9,那么点到轴的距离为 .
11.(新课标全国Ⅰ卷)已知和为椭圆上两点.
(1)求C的离心率;
(2)若过P的直线交C于另一点B,且的面积为9,求的方程.
12.(新课标全国Ⅱ卷)已知双曲线,点在上,为常数,.按照如下方式依次构造点,过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.
(1)若,求;
(2)证明:数列是公比为的等比数列;
(3)设为的面积,证明:对任意的正整数,.
13.(全国甲卷数学(理)(文))设椭圆的右焦点为,点在上,且轴.
(1)求的方程;
(2)过点的直线与交于两点,为线段的中点,直线交直线于点,证明:轴.
14.(新高考北京卷)已知椭圆方程C:,焦点和短轴端点构成边长为2的正方形,过的直线l与椭圆交于A,B,,连接AC交椭圆于D.
(1)求椭圆方程和离心率;
(2)若直线BD的斜率为0,求t.
15.(新高考天津卷)已知椭圆椭圆的离心率.左顶点为,下顶点为是线段的中点,其中.
(1)求椭圆方程.
(2)过点的动直线与椭圆有两个交点.在轴上是否存在点使得恒成立.若存在求出这个点纵坐标的取值范围,若不存在请说明理由.
16.(新高考上海卷)已知双曲线左右顶点分别为,过点的直线交双曲线于两点.
(1)若离心率时,求的值.
(2)若为等腰三角形时,且点在第一象限,求点的坐标.
(3)连接并延长,交双曲线于点,若,求的取值范围.
一、单选题
1.(2024·福建泉州·二模)若椭圆的离心率为,则该椭圆的焦距为( )
A.B.C.或D.或
2.(2024·河北衡水·三模)已知双曲线:,圆与圆的公共弦所在的直线是的一条渐近线,则的离心率为( )
A.B.2C.D.
3.(2024·北京·三模)已知双曲线的一个焦点坐标是,则的值及的离心率分别为( )
A.B.C.1,2D.
4.(2024·贵州贵阳·三模)过点的直线与圆相交于不同的两点M,N,则线段MN的中点的轨迹是( )
A.一个半径为10的圆的一部分B.一个焦距为10的椭圆的一部分
C.一条过原点的线段D.一个半径为5的圆的一部分
5.(2024·湖南·模拟预测)已知点,点,动点M满足直线AM,BM的斜率之积为4,则动点M的轨迹方程为( )
A.B.
C.D.
6.(2024·陕西榆林·三模)在平面直角坐标系中,把到定点距离之积等于的点的轨迹称为双纽线.若,点为双纽线上任意一点,则下列结论正确的个数是( )
①关于轴不对称
②关于轴对称
③直线与只有一个交点
④上存在点,使得
A.1个B.2个C.3个D.4个
7.(2024·福建泉州·二模)双曲线,左、右顶点分别为A,B,O为坐标原点,如图,已知动直线l与双曲线C左、右两支分别交于P,Q两点,与其两条渐近线分别交于R,S两点,则下列命题正确的是( )
A.存在直线l,使得
B.当且仅当直线l平行于x轴时,
C.存在过的直线l,使得取到最大值
D.若直线l的方程为,则双曲线C的离心率为
8.(2024·河南·二模)已知双曲线的左,右焦点分别为为坐标原点,焦距为,点在双曲线上,,且的面积为,则双曲线的离心率为( )
A.2B.C.D.4
9.(2024·重庆·三模)已知抛物线的焦点为,过点的直线交抛物线于A,B两点,点在第一象限,点为坐标原点,且,则直线的斜率为( )
A.B.C.1D.-1
10.(2024·黑龙江齐齐哈尔·三模)设为抛物线的焦点,若点在上,则( )
A.3B.C.D.
11.(2024·山东泰安·二模)设抛物线的焦点为,过抛物线上点作准线的垂线,设垂足为,若,则( )
A.B.C.D.
二、多选题
12.(2024·江西·模拟预测)已知,,,动点满足与的斜率之积为,动点的轨迹记为,过点的直线交于,两点,且,的中点为,则( )
A.的轨迹方程为
B.的最小值为1
C.若为坐标原点,则面积的最大值为
D.若线段的垂直平分线交轴于点,则点的横坐标是点的横坐标的倍
13.(2024·江苏常州·二模)双曲线具有光学性质:从双曲线一个焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的另一个焦点.如图,双曲线的左、右焦点分别为,从发出的两条光线经过的右支上的两点反射后,分别经过点和,其中共线,则( )
A.若直线的斜率存在,则的取值范围为
B.当点的坐标为时,光线由经过点到达点所经过的路程为6
C.当时,的面积为12
D.当时,
14.(2024·重庆·三模)已知双曲线的左,右焦点分别为为双曲线上点,且的内切圆圆心为,则下列说法正确的是( )
A.B.直线PF1的斜率为
C.的周长为D.的外接圆半径为
15.(2024·湖北襄阳·二模)抛物线的焦点为,为其上一动点,当运动到时,,直线与抛物线相交于两点,下列结论正确的是( )
A.抛物线的方程为:
B.抛物线的准线方程为:
C.当直线过焦点时,以AF为直径的圆与轴相切
D.
16.(2024·浙江杭州·三模)如图,平面直角坐标系上的一条动直线l和x,y轴的非负半轴交于A,B两点,若恒成立,则l始终和曲线C:相切,关于曲线C的说法正确的有( )
A.曲线C关于直线和都对称
B.曲线C上的点到和到直线的距离相等
C.曲线C上任意一点到原点距离的取值范围是
D.曲线C和坐标轴围成的曲边三角形面积小于
17.(2024·河南·三模)已知椭圆经过点,且离心率为.记在处的切线为,平行于OP的直线与交于A,B两点,则( )
A.C的方程
B.直线OP与的斜率之积为-1
C.直线OP,l与坐标轴围成的三角形是等腰三角形
D.直线PA,PB与坐标轴围成的三角形是等腰三角形
18.(2024·辽宁·模拟预测)已知抛物线的焦点为F,过F的直线l与C交于A,B两点,点P在C的准线上,那么( )
A.若PA与C相切,则PB也与C相切
B.
C.若点P在x轴上,则为定值
D.若点P在x轴上,且满足,则直线l的斜率绝对值为
19.(2024·广东汕头·二模)用一个不垂直于圆锥的轴的平面截圆锥,当圆锥的轴与截面所成的角不同时,可以得到不同的截口曲线,也即圆锥曲线.探究发现:当圆锥轴截面的顶角为时,若截面与轴所成的角为,则截口曲线的离心率.例如,当时,,由此知截口曲线是抛物线.如图,圆锥中,、分别为、的中点,、为底面的两条直径,且、,.现用平面(不过圆锥顶点)截该圆锥,则( )
A.若,则截口曲线为圆
B.若与所成的角为,则截口曲线为椭圆或椭圆的一部分
C.若,则截口曲线为抛物线的一部分
D.若截口曲线是离心率为的双曲线的一部分,则
三、填空题
20.(2024·北京·三模)已知双曲线.则的离心率是 ;若的一条渐近线与圆交于,两点,则 .
21.(2024·河北衡水·三模)已知椭圆的左、右焦点分别为,焦距为6,点,直线与交于A,B两点,且为AB中点,则的周长为 .
22.(2024·山东聊城·三模)已知双曲线的一个焦点为为坐标原点,点在双曲线上运动,以为直径的圆过点,且恒成立,则的离心率的取值范围为 .
23.(2024·湖南衡阳·三模)如图所示,已知双曲线的右焦点F,过点F作直线l交双曲线C于两点,过点F作直线l的垂线交双曲线C于点G,,且三点共线(其中O为坐标原点),则双曲线C的离心率为 .
24.(2024·北京·三模)已知抛物线的焦点为,则的坐标为 ;过点的直线交抛物线于两点,若,则的面积为 .
25.(2024·湖南长沙·三模)已知椭圆的离心率为,过的左焦点且斜率为1的直线与交于两点.若,则的焦距为 .
26.(2024·河北保定·三模)若双曲线C:的左、右焦点为,,P是其右支上的动点.若存在P,使得,,依次成等比数列,则t的取值范围为 .
四、解答题
27.(2024·北京·三模)已知椭圆的离心率为.
(1)求椭圆的方程和短轴长;
(2)设直线与椭圆相切于第一象限内的点,不过原点且平行于的直线与椭圆交于不同的两点A,B,点关于原点的对称点为.记直线的斜率为,直线的斜率为,求的值.
28.(2024·江西·模拟预测)已知双曲线的离心率为2,顶点到渐近线的距离为.
(1)求的方程;
(2)若直线交于两点,为坐标原点,且的面积为,求的值.
29.(2024·山东·模拟预测)已知抛物线:经过点.
(1)求抛物线的方程;
(2)设直线与的交点为,,直线与倾斜角互补.
(i)求的值;
(ii)若,求面积的最大值.
30.(2024·山东济宁·三模)已知椭圆的左焦点为,上顶点为,离心率,直线FB过点.
(1)求椭圆的标准方程;
(2)过点的直线与椭圆相交于M,N两点(M、N都不在坐标轴上),若,求直线的方程.
31.(2024·重庆·三模)已知为圆上一个动点,MN垂直轴,垂足为N,O为坐标原点,的重心为.
(1)求点的轨迹方程;
(2)记(1)中的轨迹为曲线,直线与曲线相交于A、B两点,点,若点恰好是的垂心,求直线的方程.
32.(2024·云南曲靖·模拟预测)已知抛物线,焦点为,点为曲线的准线与对称轴的交点,过的直线与抛物线交于两点.
(1)证明:当时,与抛物线相切;
(2)当时,求.
33.(2024·四川·模拟预测)已知抛物线:()的焦点为,为抛物线上一点,,若的最小值为2.
(1)求抛物线的方程;
(2)直线过点且交抛物线于,两点,求的最小值.
34.(2024·湖南长沙·二模)已知椭圆中心在原点,左焦点为,其四个顶点的连线围成的四边形面积为.
(1)求椭圆的标准方程;
(2)过椭圆的左焦点作斜率存在的两直线、分别交椭圆于、、、,且,线段、的中点分别为、.求四边形面积的最小值.
35.(2024·福建厦门·三模)平面直角坐标系中,动点在圆上,动点(异于原点)在轴上,且,记的中点的轨迹为.
(1)求的方程;
(2)过点的动直线与交于A,B两点.问:是否存在定点,使得为定值,其中分别为直线NA,NB的斜率.若存在,求出的坐标,若不存在,说明理由.
2024年高考真题和模拟题数学分类汇编(全国通用)专题10 圆锥曲线(解析版): 这是一份2024年高考真题和模拟题数学分类汇编(全国通用)专题10 圆锥曲线(解析版),共63页。
专题14 新定义型问题(原卷版+解析版)【好题汇编】2024年高考真题和模拟题数学分类汇编(全国通用): 这是一份专题14 新定义型问题(原卷版+解析版)【好题汇编】2024年高考真题和模拟题数学分类汇编(全国通用),文件包含专题14新定义型问题原卷版好题汇编2024年高考真题和模拟题数学分类汇编全国通用docx、专题14新定义型问题解析版好题汇编2024年高考真题和模拟题数学分类汇编全国通用docx等2份试卷配套教学资源,其中试卷共82页, 欢迎下载使用。
专题13 立体几何与空间向量(原卷版+解析版)【好题汇编】2024年高考真题和模拟题数学分类汇编(全国通用): 这是一份专题13 立体几何与空间向量(原卷版+解析版)【好题汇编】2024年高考真题和模拟题数学分类汇编(全国通用),文件包含专题13立体几何与空间向量原卷版好题汇编2024年高考真题和模拟题数学分类汇编全国通用docx、专题13立体几何与空间向量解析版好题汇编2024年高考真题和模拟题数学分类汇编全国通用docx等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。