所属成套资源:人教版八年级数学下册常考点微专题提分精练期末难点特训(原卷版+解析)
人教版八年级数学下册常考点微专题提分精练专题30一次函数与矩形结合(原卷版+解析)
展开
这是一份人教版八年级数学下册常考点微专题提分精练专题30一次函数与矩形结合(原卷版+解析),共50页。
1.如图,一次函数的图像与轴、轴分别交于点、,点在轴上,点为平面内一点,且四边形为矩形,则点的坐标为( )
A.B.C.D.
2.如图1,在平面直角坐标系中,一次函数的图象分别交轴,轴于,两点,将绕点顺时针旋转得(点与点对应,点与点对应)
(1)求直线的解析式;
(2)点为线段上一点,过点作轴交直线于点,作轴交直线于点,当时,求点的坐标;
(3)如图2,若点为线段的中点,点为直线上一点,点为坐标系内一点,且以,,,为顶点的四边形为矩形,请直接写出所有符合条件的点的坐标
3.如图,一次函数y=﹣2x+3的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D.当矩形OCPD的面积为1时,求此时P点的坐标.
4.如图1,□ABCD在平面直角坐标系xOy中,已知点、、、,点G是对角线AC的中点,过点G的直线分别与边AB、CD交于点E、F,点P是直线EF上的动点.
(1)求点D的坐标和的值;
(2)如图2,当直线EF交x轴于点,且时,求点P的坐标;
(3)如图3,当直线EF交x轴于点时,在坐标平面内是否存在一点Q,使得以P、A、Q、C为顶点的四边形是矩形?若存在,直接写出点P的坐标;若不存在,请说明理由.
图1 图2 图3
5.如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为( )
A.7B.6C.4D.8
第II卷(非选择题)
请点击修改第II卷的文字说明
二、填空题(共0分)
6.如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线恰好将矩形OABC分成面积相等的两部分,那么b=_____________.
7.如图,在直角坐标系中,点B的坐标为,若直线恰好将矩形OABC的面积分为1:2的两部分,则m的值为______.
三、解答题(共0分)
8.如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0),B(6,0),D(0,4)
(1) 根据图形直接写出点C的坐标;
(2) 已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.
9.如图,已知矩形ABOC,顶点B、C分别在x轴的负半轴和y轴的正半轴上,A(-4,8),一次函数的图象分别交边AB、OC于D、E,交x轴于F,且AD=OE
(1) 求b值
(2) 若点P(x,y)是线段EF上一点,若△PEO与△PBO的面积的比为1∶4,求P点坐标
10.在平面直角坐标系中,点的坐标为,过点分别作轴于点,轴于点,一次函数的图象经过点.
(1)用含的代数式表示.
(2)当时,直线被矩形截得线段的长度为 .
(3)当时,函数值满足,求的取值范围.
(4)当直线将矩形分成的两部分面积比为时,直接写出的值.
11.在平面直角坐标系中,若点关于点中心对称,则.根据上述材料提供的关系式解答下列问题:
(1)已知由点构成的三角形,若与关于点成中心对称,请直接写出点的坐标;
(2)如图所示,在平面直角坐标系中,矩形的顶点B的坐标为,直线恰好将矩形分成面积相等的两部分,求m的值.
12.【阅读材料】如图1,通过观察,可以发现“绝对值函数”y=|x|的图象是轴对称图形,有最低点,而且增减性也很特殊…….
【实践探究】
(1)在图1中画出“绝对值函数”y=|x−3|的图象.写出该图象的两条性质,并根据图象判断:“绝对值函数”y=|x−3|的图象可以由y=|x|的图象向_______平移_______个单位得到.
【问题解决】
(2)如图2,矩形ABCD的顶点A,B在x轴上,顶点C(3,3),D(−1,3),当“绝对值函数”y=|x−k|(k为常数)的图象有部分被矩形ABCD覆盖时,被覆盖的部分记作“图象W”,点P(m,n)是“图象W”上的一个动点.①当n的最大值为3时,求k的取值范围;②已知n的最小值为k+3,求满足条件的k的值.
13.如图,已知在平面直角坐标系中,直线l1:y=x,l2:y=kx+10,矩形ABCD的边AD在y轴上,顶点C,B分别在直线l1,l2上,点C的纵坐标等于1,直线l2与x,y轴分别相交于点E,Q,E(,0),直线l1,l2相交于点P.
(1)如图1,求k的值和矩形ABCD的面积及点P的坐标;
(2)将矩形ABCD沿射线OP方向平移得到矩形A′B′C′D′.
①如图2,当点A的对应点A′落在直线l2上时,直接写出平移的距离__________;
②如图3,在平移过程中,当直线l2将矩形A′B′C′D′的面积分成的两部分面积比是5:7时,直接写出点C的对应点C′的坐标__________.
14.如图1,已知长方形,,,为长方形边上的动点,动点从出发,沿着运动到点停止,速度为,设点用的时间为秒,的面积为,和的关系如图2所示.
(1)_________,____________;
(2)写出时,与之间的关系式;
(3)当时,求的值.
15.如图,平面直角坐标系中,长方形的边在轴上,边在轴上,且,.
(1)在长方形的边上找一点,使得直线将长方形的面积分成1:3两部分,则点的坐标为 .
(2)如图,已知点在边上,且,请你在边上找一点,将沿翻折,使得点恰好落在轴上的点处.
求线段所在直线的函数表达式;
在线段上是否存在一点,使得直线将四边形的面积分成2:3两部分?若存在,求出符合条件的所有点坐标;若不存在,请说明理由.
16.如图,将一个矩形纸片OABC放置在平面直角坐标系xOy内,点A在x轴正半轴上,点C在y轴正半轴上,点P是线段BC的中点,沿AP翻折得到,过点C、的直线交x轴于点D.
(1)判断OD与AD的数量关系?并证明;
(2)求点B的坐标;
(3)求线段的长.
17.已知矩形在平面直角坐标系中的位置如图所示,,,将矩形沿直线折叠,使点与点重合,点的对应点为点.
(1)求点坐标;
(2)求线段的长度;
(3)直接写出直线和的解析式.
18.已知矩形PMON的边OM、ON分别在x、y轴上,O为坐标原点,且点P的坐标为(﹣2,3).将矩形PMON沿x轴正方向平移4个单位,得到矩形P1M1O1N1再将矩形P1M1O1N1绕着点O1旋转90°得到矩形P2M2O2N2.在坐标系中画出矩形P2M2O2N2,并求出直线P1P2的解析式.
19.如图,在平面直角坐标系中,点A的坐标为(0,6),点B在x轴的正半轴上.若点P、Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P、Q的“涵矩形”.下图为点P、Q的“涵矩形”的示意图.
(1)点B的坐标为(3,0);
①若点P的横坐标为,点Q与点B重合,则点P、Q的“涵矩形”的周长为 .
②若点P、Q的“涵矩形”的周长为6,点P的坐标为(1,4),则点E(2,1),F(1,2),G(4,0)中,能够成为点P、Q的“涵矩形”的顶点的是 .
(2)四边形PMQN是点P、Q的“涵矩形”,点M在△AOB的内部,且它是正方形;
①当正方形PMQN的周长为8,点P的横坐标为3时,求点Q的坐标.
②当正方形PMQN的对角线长度为/2时,连结OM.直接写出线段OM的取值范围 .
20.在平面直角坐标系 中,,,. 为长方形 内(不包括边界)一点,过点 分别作 轴和 轴的平行线,这两条平行线分长方形 为四个小长方形,若这四个小长方形中有一个长方形的周长等于 ,则称 为长方形 的长宽点,例如:如图中的 为长方形 的一个长宽点.
(1)在点,, 中,长方形 的长宽点是 .
(2)若 为长方形 的长宽点,求 的值.
(3)若一次函数 的图象上存在长方形 的长宽点,求 的取值范围.
21.如图,已知直线AB与正比例函数的图像交于点,与x轴交于点B,与y轴交于点.点P为直线OA上的动点,点P的横坐标为t,以点P为顶点,向右作矩形PDEF,满足轴,且.
(1)求k值及直线AB的函数表达式,
(2)判定时,点E是否落在直线AB上,请说明理由;
(3)在点Р运动的过程中,若矩形PDEF与直线AB有公共点,求t的取值范围.
专题30 一次函数与矩形结合
1.如图,一次函数的图像与轴、轴分别交于点、,点在轴上,点为平面内一点,且四边形为矩形,则点的坐标为( )
A.B.C.D.
答案:D
分析:根据一次函数,可求出,又四边形为矩形,点在轴上,设,根据勾股定理可求,,再根据矩形对角线互相平分,求出AC中点M,即可求出D点的坐标.
【详解】解:依题意,设
一次函数
即
即
取AC中点M,连接BD,则
根据矩形的性质,M点也为BD的中点
故答案为:D.
【点睛】本题考查一次函数与四边形相结合,坐标轴上的点的特征、勾股定理与矩形的性质,注意利用对角线互相平分是解题的关键.
2.如图1,在平面直角坐标系中,一次函数的图象分别交轴,轴于,两点,将绕点顺时针旋转得(点与点对应,点与点对应)
(1)求直线的解析式;
(2)点为线段上一点,过点作轴交直线于点,作轴交直线于点,当时,求点的坐标;
(3)如图2,若点为线段的中点,点为直线上一点,点为坐标系内一点,且以,,,为顶点的四边形为矩形,请直接写出所有符合条件的点的坐标
答案:(1)
(2),
(3)以,,,为顶点的四边形为矩形时,点的坐标为或,或
分析:(1)依题意求出点,坐标,求出,,求出点,的坐标,用待定系数法求解析式;
(2)设,则,由轴可得点的纵坐标为,代入一次函数可得点的横坐标为,表示出、,求出,根据,可得的值,即可得点的坐标;
(3)分两种情况:①为矩形的边时,②为矩形的对角线时,根据矩形的判定和性质即可求解.
【详解】(1)一次函数,令,则,令,则,
,,即,,
将绕点顺时针旋转得,
,,
,,
设直线的解析式为,
则,解得,
直线的解析式为;
(2)设,则,
轴,
点的纵坐标为,
将代入一次函数得:,
,即点的横坐标为,
,,
,,
,
,
,
,
点的坐标为,;
(3)①为矩形的边时,如图,分别过点、作交直线于,作交直线于,在分别过点、作交直线于,作交直线于,则四边形、四边形均为矩形,
,,点为线段的中点,
,,
将绕点顺时针旋转得,
,
,,,
,
,
,
,
,
,,
,
点为线段的中点,
,,
;
设直线的解析式为,则,
,
直线的解析式为,
,,
,
可设直线的解析式为,
将代入得,,
,
直线的解析式为,
联立直线得,
解得,
,;
综上,为矩形的边时,点的坐标为或,;
②为矩形的对角线时,如图,
,,
轴,
四边形为矩形,
轴,
点与点重合,
.
综上,以,,,为顶点的四边形为矩形时,点的坐标为或,或.
【点睛】本题是一次函数综合题,主要考查了待定系数法求一次函数的解析式,中点坐标公式的运用,一次函数图象上点的坐标的特征,全等三角形的判定与性质,图形的旋转的性质,矩形的性质,利用点的坐标表示出相应线段的长度是解题的关键.
3.如图,一次函数y=﹣2x+3的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D.当矩形OCPD的面积为1时,求此时P点的坐标.
答案:(1,1)或(,2)
分析:设P(a,-2a+3),则利用矩形的性质列出关于a的方程,通过解方程求得a值,继而求得点P的坐标.
【详解】解:∵点P在一次函数y=-2x+3的图象上,
∴可设P(a,-2a+3)(a>0),
由题意得 a(-2a+3)=1,
整理得2a2-3a+1=0,
解得 a1=1,a2=,
∴-2a+3=1或-2a+3=2.
∴P(1,1)或(,2)时,矩形OCPD的面积为1.
【点睛】本题考查了一次函数图象上点的坐标特征.一次函数图象上所有点的坐标都满足该函数关系式.
4.如图1,□ABCD在平面直角坐标系xOy中,已知点、、、,点G是对角线AC的中点,过点G的直线分别与边AB、CD交于点E、F,点P是直线EF上的动点.
(1)求点D的坐标和的值;
(2)如图2,当直线EF交x轴于点,且时,求点P的坐标;
(3)如图3,当直线EF交x轴于点时,在坐标平面内是否存在一点Q,使得以P、A、Q、C为顶点的四边形是矩形?若存在,直接写出点P的坐标;若不存在,请说明理由.
图1 图2 图3
答案:(1)(2,−2),7;(2)点P的坐标为(,−)或(−,);(3)点P的坐标为(3,0)或(−1,2)或(,−)或(−,).
分析:(1)根据平行线的性质可求点D的坐标,根据重心的定义可得S四边形BEFC=S▱ABCD从而求解;
(2)分两种情况:①点P在AC左边,②点P在AC右边,进行讨论即可求解;
(3)先作出图形,再根据矩形的性质即可求解.
【详解】解:(1)∵▱ABCD在平面直角坐标系xOy中,点A(−1,0)、B(0,4)、C(3,2),
∴点D的坐标为(2,−2),
∴S▱ABCD=6×4−×1×4−×3×2−×1×4−×3×2=14,
∵点G是对角线AC的中点,
∴S四边形BEFC=S▱ABCD=7;
(2)∵点G是对角线AC的中点,
∴G(1,1),
设直线GH的解析式为y=kx+b,
则,
解得,
∴直线GH的解析式为y=−x+;
①点P在AC右边,
S△ACH=×6×2=6,
∵S△PAC=S四边形BEFC,
1+4×=,
当x=时,y=−×+=−,
∴P(,−);
②点P在AC左边,
由中点坐标公式可得P(−,);
综上所述,点P的坐标为(,−)或(−,);
(3)如图,
设直线GK的解析式为y=kx+b,则,
解得,
则直线GK的解析式为y=−x+,
CP⊥AP时,点P的坐标为(3,0)或(−1,2);
CP⊥AC时,直线AC的解析式为y=x+,
直线CP的解析式为y=−2x+8,
故点P的坐标为(,−);
AP⊥AC时,
同理可得点P的坐标为(−,);
综上所述,点P的坐标为(3,0)或(−1,2)或(,−)或(−,).
【点睛】本题考查四边形的综合题、矩形的性质、三角形和四边形的面积等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会用方程的思想思考问题,属于中考压轴题.
5.如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为( )
A.7B.6C.4D.8
答案:A
分析:如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.
【详解】解:如图所示,连接AC,OB交于点D,
∵C是直线与y轴的交点,
∴点C的坐标为(0,2),
∵OA=4,
∴A点坐标为(4,0),
∵四边形OABC是矩形,
∴D是AC的中点,
∴D点坐标为(2,1),
当直线经过点D时,可将矩形OABC的面积平分,
由题意得平移后的直线解析式为,
∴,
∴,
故选A.
【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.
6.如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线恰好将矩形OABC分成面积相等的两部分,那么b=_____________.
答案:0.5
分析:经过矩形对角线的交点的直线平分矩形的面积.故先求出对角线的交点坐标,再代入直线解析式求解.
【详解】连接AC、OB,交于D点,作DE⊥OA于E点,
∵四边形OABC为矩形,
∴DE=AB=3,OE=OA=7.5,
∴D(7.5,3),
∵直线恰好将矩形OABC分成面积相等的两部分,
∴直线经过点D,
∴将(7.5,3)代入直线得:
3=×7.5+b,
解得:b=0.5,
故答案为0.5.
【点睛】本题考查了一次函数的综合应用及矩形的性质;找着思考问题的突破口,理解过矩形对角线交点的直线将矩形面积分为相等的两部分是正确解答本题的关键.
7.如图,在直角坐标系中,点B的坐标为,若直线恰好将矩形OABC的面积分为1:2的两部分,则m的值为______.
答案:-1或-6##-6或-1
分析:直线恰好将矩形OABC的面积分为1:2的两部分,设直线与BC的交点为,与x轴交点为,
根据矩形分成两部分面积为40和80,列出方程,解方程即可求解.
【详解】如图,设直线与BC的交点为,与x轴交点为,
∵点B的坐标为,
∴OABC的面积为,,
∵直线恰好将矩形OABC的面积分为1:2的两部分,直线与BC的交点为,与x轴交点为,
∴矩形分成两部分面积为40和80,
∴或,
∴或.
【点睛】本题考查了一次函数与几何综合,掌握一次函数的性质是解题的关键.
三、解答题(共0分)
8.如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0),B(6,0),D(0,4)
(1) 根据图形直接写出点C的坐标;
(2) 已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.
答案:(1)(6,4);(2) y= x+6.
分析:(1)根据点B、D的坐标求出点C的横坐标与纵坐标,然后写出即可;
(2)连接OC、BD得到矩形的中心,然后根据平分矩形面积的直线必过中心作出直线m即可,再利用待定系数法求一次函数解析式解答.
【详解】(1)∵B(6,0)、D(0,4),
∴点C的横坐标是6,纵坐标是4,
∴点C的坐标为(6,4);
故答案为(6,4);
(2)直线m如图所示,
对角线OC、BD的交点坐标为(3,2),
设直线m的解析式为y=kx+b(k≠0),
则,
解得,
所以,直线m的解析式为y=-x+6.
【点睛】本题考查了中心对称,矩形的性质,待定系数法求一次函数解析式,熟记过矩形的中心的直线把矩形的面积分成面积相等的两份是解题的关键.
9.如图,已知矩形ABOC,顶点B、C分别在x轴的负半轴和y轴的正半轴上,A(-4,8),一次函数的图象分别交边AB、OC于D、E,交x轴于F,且AD=OE
(1) 求b值
(2) 若点P(x,y)是线段EF上一点,若△PEO与△PBO的面积的比为1∶4,求P点坐标
答案:(1)b=5;(2)P(,).
分析:(1)将D、E两点的横坐标代入一次函数,根据AD=OE,列出等量关系,计算求解.
(2)将P点代入一次函数,得P(x,x+5),将△PEO和△PBO的面积用含x得代数式表达出来,利用△PEO与△PBO的面积的比为1∶4,列出等量关系,求出x的值.
【详解】(1)由题意知:点E横坐标为0,点D横坐标为-4,
在y=x+b中,令x=0,得y=b,
∴E(0,b)
令x=-4,则y=-2+b
∴D(-4,-2+b)
又∵AD=OE
∴8-(-2+b)=b
∴b=5;
(2)由(1)知直线EF:y=x+5
∴P(x,x+5)(-10≤x≤0)
∴S△PEO=×5(-x)=x
S△PBO=×4(x+5)=x+10
又∵=
∴x+10=x×4
x=
∴x+5=
即P(,).
【点睛】本题主要考查了一次函数的求解,以及三角形面积;掌握在坐标系中解一次函数是解题的关键.
10.在平面直角坐标系中,点的坐标为,过点分别作轴于点,轴于点,一次函数的图象经过点.
(1)用含的代数式表示.
(2)当时,直线被矩形截得线段的长度为 .
(3)当时,函数值满足,求的取值范围.
(4)当直线将矩形分成的两部分面积比为时,直接写出的值.
答案:(1);(2);(3),;(4).
分析:(1)把点代入,移项整理即可得到答案;
(2)先求出一次函数的解析式,然后求出直线与矩形的边OB、AC的交点坐标,利用勾股定理即可求出答案;
(3)由题意,可分为两种情况进行讨论:当时,y随x增大而增大;当时,y随x增大而减小;分别求出k的取值范围即可;
(4)与偶题意,可分为两种情况进行分析:分成的两部分面积比为或;分别求出k的值即可.
【详解】解:(1)将点P(2,3)代入,得
,
∴.
(2)根据题意,∵,
∴,
∴一次函数的解析式为:,
设直线与矩形的边OB、AC分别交于点D、E,如图:
令,则,
∴点D为(,0);
令,则,
∴点E为(,4);
∴.
故答案为:.
(3)根据题意,
当时,y随x增大而增大,
当x=1时,.
当x=5时,.
由已知,得解得,.
∴.
当时,y随x增大而减小,
当x=1时,.
当x=5时,.
由已知,得解得,.
∴.
∴综上,k的取值范围为:,.
(4)根据题意,如图:
∵,
∴,
令,则,
∴点D为(,0);
令,则,
∴点E为(,4);
∴;
;
∵直线将矩形分成的两部分面积比为,
当时,有
,
解得:;
经检验:符合题意
当时,有
,
解得:
经检验:符合题意
综合上述,的值为:.
【点睛】本题考查了一次函数的图像和性质,矩形的性质,坐标与图形,解一元一次方程,解一元一次不等式组等知识,解题的关键是熟练掌握所学的知识,正确的理解题意,运用分类讨论的思想进行解题.
11.在平面直角坐标系中,若点关于点中心对称,则.根据上述材料提供的关系式解答下列问题:
(1)已知由点构成的三角形,若与关于点成中心对称,请直接写出点的坐标;
(2)如图所示,在平面直角坐标系中,矩形的顶点B的坐标为,直线恰好将矩形分成面积相等的两部分,求m的值.
答案:(1)
(2)
分析:(1)利用题目中给出的运算方法进行计算即可;
(2)根据矩形的性质,当经过矩形的中心时,恰好将矩形分成面积相等的两部分,将矩形的中心坐标代入解析式求解即可.
【详解】(1)解:由题意得:与关于成中心对称,
设:,
则:,
解得:,
∴;
(2)解:连接,
∵
∴矩形的中心坐标为:,即:,
∵直线恰好将矩形分成面积相等的两部分,矩形是中心对称图形,
∴必过,
∴,
解得:.
【点睛】本题考查一次函数与图形的综合应用,熟练掌握中心对称的性质,中点坐标公式是解题的关键.
12.【阅读材料】如图1,通过观察,可以发现“绝对值函数”y=|x|的图象是轴对称图形,有最低点,而且增减性也很特殊…….
【实践探究】
(1)在图1中画出“绝对值函数”y=|x−3|的图象.写出该图象的两条性质,并根据图象判断:“绝对值函数”y=|x−3|的图象可以由y=|x|的图象向_______平移_______个单位得到.
【问题解决】
(2)如图2,矩形ABCD的顶点A,B在x轴上,顶点C(3,3),D(−1,3),当“绝对值函数”y=|x−k|(k为常数)的图象有部分被矩形ABCD覆盖时,被覆盖的部分记作“图象W”,点P(m,n)是“图象W”上的一个动点.①当n的最大值为3时,求k的取值范围;②已知n的最小值为k+3,求满足条件的k的值.
答案:(1)图见解析,性质:①关于直线x=3对称;最低点(3,0);②当x3时,y随x的增大而增大(合理即可);右,3;
(2)①或;②
分析:(1)利用描点法画出图象即可;根据图象即可得出结论;
(2)①根据(1),分别画出“绝对值函数”y=|x−k|经过点C和点D的图象,根据题意结合图象求解即可;②分k>3时,当−1≤k≤3时,当k
相关试卷
这是一份人教版八年级数学下册常考点微专题提分精练专题33一次函数与面积结合(原卷版+解析),共32页。试卷主要包含了如图,一条直线经过点A等内容,欢迎下载使用。
这是一份人教版八年级数学下册常考点微专题提分精练专题32一次函数与将军饮马结合(原卷版+解析),共39页。试卷主要包含了定义等内容,欢迎下载使用。
这是一份人教版八年级数学下册常考点微专题提分精练专题31一次函数与菱形结合(原卷版+解析),共50页。试卷主要包含了已知等内容,欢迎下载使用。