终身会员
搜索
    上传资料 赚现金
    高考数学一轮复习考点探究与题型突破第47讲两直线的位置关系(原卷版+解析)
    立即下载
    加入资料篮
    高考数学一轮复习考点探究与题型突破第47讲两直线的位置关系(原卷版+解析)01
    高考数学一轮复习考点探究与题型突破第47讲两直线的位置关系(原卷版+解析)02
    高考数学一轮复习考点探究与题型突破第47讲两直线的位置关系(原卷版+解析)03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习考点探究与题型突破第47讲两直线的位置关系(原卷版+解析)

    展开
    这是一份高考数学一轮复习考点探究与题型突破第47讲两直线的位置关系(原卷版+解析),共16页。试卷主要包含了两条直线平行与垂直的判定,距离公式,对称问题等内容,欢迎下载使用。


    1.两条直线平行与垂直的判定
    (1)两条直线平行
    对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.
    (2)两条直线垂直
    如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.
    2.直线的交点与直线的方程组成的方程组的解的关系
    (1)两直线的交点
    点P的坐标既满足直线l1的方程A1x+B1y+C1=0,也满足直线l2的方程A2x+B2y+C2=0,即点P的坐标是方程组eq \b\lc\{(\a\vs4\al\c1(A1x+B1y+C1=0,,A2x+B2y+C2=0))的解,解这个方程组就可以得到这两条直线的交点坐标.
    (2)两直线的位置关系
    3.距离公式
    (1)两点间的距离公式
    平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=eq \r((x2-x1)2+(y2-y1)2).
    特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=eq \r(x2+y2).
    (2)点到直线的距离公式
    平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=eq \f(|Ax0+By0+C|,\r(A2+B2)).
    (3)两条平行线间的距离公式
    一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=eq \f(|C1-C2|,\r(A2+B2)).
    4.对称问题
    (1)点P(x0,y0)关于点A(a,b)的对称点为P′(2a-x0,2b-y0).
    (2)设点P(x0,y0)关于直线y=kx+b的对称点为P′(x′,y′),则有eq \b\lc\{(\a\vs4\al\c1(\f(y′-y0,x′-x0)·k=-1,,\f(y′+y0,2)=k·\f(x′+x0,2)+b,))可求出x′,y′.
    考点1 两条直线的平行与垂直
    [名师点睛]
    1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x,y的系数不能同时为零这一隐含条件.
    2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.
    [典例]
    1.(2023·杭州模拟)已知直线l1:ax+(a+2)y+1=0,l2:x+ay+2=0(a∈R),则“ea=eq \f(1,e)”是“l1∥l2”的( )
    A.充分不必要条件
    B.必要不充分条件
    C.充要条件
    D.既不充分也不必要条件
    2.(2023·长春模拟)已知直线l经过点(1,-1),且与直线2x-y-5=0垂直,则直线l的方程为( )
    A.2x+y-1=0 B.x-2y-3=0
    C.x+2y+1=0 D.2x-y-3=0
    3.(2023·荆门模拟)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△ABC的顶点A(2,0),B(1,2),且AC=BC,则△ABC的欧拉线的方程为( )
    A.x-2y-4=0 B.2x+y-4=0
    C.4x+2y+1=0 D.2x-4y+1=0
    [举一反三]
    1.已知m,n∈R,则“直线x+my-1=0与nx+y+1=0平行”是“mn=1”的( )
    A.充分不必要条件
    B.必要不充分条件
    C.充要条件
    D.既不充分又不必要条件
    2.(2023·烟台期末)若直线l1:(k-3)x+(k+4)y+1=0与l2:(k+1)x+2(k-3)y+3=0垂直,则实数k的值是( )
    A.3或-3 B.3或4
    C.-3或-1 D.-1或4
    3.经过两条直线2x+3y+1=0和x-3y+4=0的交点,并且垂直于直线3x+4y-7=0的直线方程为________.
    4.(多选)已知直线l1:x+my-1=0,l2:(m-2)x+3y+3=0,则下列说法正确的是( )
    A.若l1∥l2,则m=-1或m=3
    B.若l1∥l2,则m=3
    C.若l1⊥l2,则m=-eq \f(1,2)
    D.若l1⊥l2,则m=eq \f(1,2)
    考点2 两直线的交点与距离问题
    [名师点睛]
    (1)求过两直线交点的直线方程的方法:先求出两直线的交点坐标,再结合其他条件写出直线方程.
    (2)利用距离公式应注意:①点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|;②两平行线间的距离公式要把两直线方程中x,y的系数化为相等.
    [典例]
    1.已知直线y=kx+2k+1与直线y=-eq \f(1,2)x+2的交点位于第一象限,则实数k的取值范围是________.
    2.(2023·湖州调研)已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是________.
    3.若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为eq \f(2\r(13),13),则c的值是________.
    [举一反三]
    1.两条平行直线2x-y+3=0和ax+3y-4=0间的距离为d,则a,d的值分别为( )
    A.a=6,d=eq \f(\r(6),3) B.a=-6,d=eq \f(\r(5),3)
    C.a=6,d=eq \f(\r(5),3) D.a=-6,d=eq \f(\r(6),3)
    2.已知直线经过点(1,2),并且与点(2,3)和(0,-5)的距离相等,则此直线的方程为________________.
    3.(多选)(2023·济南调研)已知直线l1:2x+3y-1=0和l2:4x+6y-9=0,若直线l到直线l1的距离与到直线l2的距离之比为1∶2,则直线l的方程为( )
    A.2x+3y-8=0 B.4x+6y+5=0
    C.6x+9y-10=0 D.12x+18y-13=0
    考点3 对称问题
    [名师点睛]
    (1)光的反射问题实质是点关于直线的对称问题,要注意转化.
    (2)直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解.
    (3)求直线l1关于直线l对称的直线l2,有两种处理方法:
    ①在直线l1上取两点(一般取特殊点),利用求点关于直线的对称点的方法求出这两点关于直线l的对称点,再用两点式写出直线l2的方程.
    ②设点P(x,y)是直线l2上任意一点,其关于直线l的对称点为P1(x1,y1)(P1在直线l1上),根据点关于直线对称建立方程组,用x,y表示出x1,y1,再代入直线l1的方程,即得直线l2的方程.
    [典例]
    1.过点P(0,1)作直线l,使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段被点P平分,则直线l的方程为________________.
    2.已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为________.
    3.直线2x-y+3=0关于直线x-y+2=0对称的直线方程是________________.
    [举一反三]
    1.直线2x-4y-1=0关于x+y=0对称的直线方程为( )
    A.4x-2y-1=0 B.4x-2y+1=0
    C.4x+2y+1=0 D.4x+2y-1=0
    2.在等腰直角三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点.光线从点P出发,经BC,CA反射后又回到点P(如图所示).若光线QR经过△ABC的重心,则AP的长度为( )
    A.2 B.1 C.eq \f(8,3) D.eq \f(4,3)
    3.已知直线l:2x-3y+1=0,点A(-1,-2).求:
    (1)点A关于直线l的对称点A′的坐标;
    (2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;
    (3)直线l关于点A的对称直线l′的方程.
    方程组eq \b\lc\{(\a\vs4\al\c1(A1x+B1y+C1=0,,A2x+B2y+C2=0))的解
    一组
    无数组
    无解
    直线l1与l2的公共点的个数
    一个
    无数个
    零个
    直线l1与l2的位置关系
    相交
    重合
    平行
    第47讲 两直线的位置关系
    1.两条直线平行与垂直的判定
    (1)两条直线平行
    对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.
    (2)两条直线垂直
    如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.
    2.直线的交点与直线的方程组成的方程组的解的关系
    (1)两直线的交点
    点P的坐标既满足直线l1的方程A1x+B1y+C1=0,也满足直线l2的方程A2x+B2y+C2=0,即点P的坐标是方程组eq \b\lc\{(\a\vs4\al\c1(A1x+B1y+C1=0,,A2x+B2y+C2=0))的解,解这个方程组就可以得到这两条直线的交点坐标.
    (2)两直线的位置关系
    3.距离公式
    (1)两点间的距离公式
    平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=eq \r((x2-x1)2+(y2-y1)2).
    特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=eq \r(x2+y2).
    (2)点到直线的距离公式
    平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=eq \f(|Ax0+By0+C|,\r(A2+B2)).
    (3)两条平行线间的距离公式
    一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=eq \f(|C1-C2|,\r(A2+B2)).
    4.对称问题
    (1)点P(x0,y0)关于点A(a,b)的对称点为P′(2a-x0,2b-y0).
    (2)设点P(x0,y0)关于直线y=kx+b的对称点为P′(x′,y′),则有eq \b\lc\{(\a\vs4\al\c1(\f(y′-y0,x′-x0)·k=-1,,\f(y′+y0,2)=k·\f(x′+x0,2)+b,))可求出x′,y′.
    考点1 两条直线的平行与垂直
    [名师点睛]
    1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x,y的系数不能同时为零这一隐含条件.
    2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.
    [典例]
    1.(2023·杭州模拟)已知直线l1:ax+(a+2)y+1=0,l2:x+ay+2=0(a∈R),则“ea=eq \f(1,e)”是“l1∥l2”的( )
    A.充分不必要条件
    B.必要不充分条件
    C.充要条件
    D.既不充分也不必要条件
    答案 A
    解析 当l1∥l2时,eq \b\lc\{\rc\ (\a\vs4\al\c1(a2-a+2=0,,2a-1≠0,))
    解得a=-1或a=2.
    而由ea=eq \f(1,e),解得a=-1,
    所以“ea=eq \f(1,e)”是“l1∥l2”的充分不必要条件.
    2.(2023·长春模拟)已知直线l经过点(1,-1),且与直线2x-y-5=0垂直,则直线l的方程为( )
    A.2x+y-1=0 B.x-2y-3=0
    C.x+2y+1=0 D.2x-y-3=0
    答案 C
    解析 ∵直线l与直线2x-y-5=0垂直,
    ∴设直线l的方程为x+2y+c=0,
    ∵直线l经过点(1,-1),
    ∴1-2+c=0,即c=1.
    直线l的方程为x+2y+1=0.
    3.(2023·荆门模拟)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△ABC的顶点A(2,0),B(1,2),且AC=BC,则△ABC的欧拉线的方程为( )
    A.x-2y-4=0 B.2x+y-4=0
    C.4x+2y+1=0 D.2x-4y+1=0
    答案 D
    解析 由题设,可得kAB=eq \f(2-0,1-2)=-2,
    且AB的中点为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2),1)),
    ∴AB垂直平分线的斜率k=-eq \f(1,kAB)=eq \f(1,2),
    故AB的垂直平分线方程为y=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(3,2)))+1=eq \f(x,2)+eq \f(1,4),
    ∵AC=BC,则△ABC的外心、重心、垂心都在AB的垂直平分线上,
    ∴△ABC的欧拉线的方程为2x-4y+1=0.
    [举一反三]
    1.已知m,n∈R,则“直线x+my-1=0与nx+y+1=0平行”是“mn=1”的( )
    A.充分不必要条件
    B.必要不充分条件
    C.充要条件
    D.既不充分又不必要条件
    答案 A
    解析 直线x+my-1=0与直线nx+y+1=0平行,则eq \f(1,n)=eq \f(m,1)≠eq \f(-1,1),
    ∴mn=1,充分性成立.
    而m=-1,n=-1时,mn=1,但x-y-1=0与-x+y+1=0重合,必要性不成立.
    2.(2023·烟台期末)若直线l1:(k-3)x+(k+4)y+1=0与l2:(k+1)x+2(k-3)y+3=0垂直,则实数k的值是( )
    A.3或-3 B.3或4
    C.-3或-1 D.-1或4
    答案 A
    解析 ∵直线l1:(k-3)x+(k+4)y+1=0,
    直线l2:(k+1)x+2(k-3)y+3=0互相垂直,
    ∴(k-3)×(k+1)+(k+4)×2(k-3)=0,
    即k2-9=0,解得k=3或k=-3.
    3.经过两条直线2x+3y+1=0和x-3y+4=0的交点,并且垂直于直线3x+4y-7=0的直线方程为________.
    答案 4x-3y+9=0
    解析 法一 由方程组eq \b\lc\{(\a\vs4\al\c1(2x+3y+1=0,,x-3y+4=0,))
    解得eq \b\lc\{(\a\vs4\al\c1(x=-\f(5,3),,y=\f(7,9),))即交点为eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(5,3),\f(7,9))).
    因为所求直线与直线3x+4y-7=0垂直,
    所以所求直线的斜率为k=eq \f(4,3).
    由点斜式得所求直线方程为
    y-eq \f(7,9)=eq \f(4,3)eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(5,3))),即4x-3y+9=0.
    法二 由垂直关系可设所求直线方程为
    4x-3y+m=0.
    由方程组eq \b\lc\{(\a\vs4\al\c1(2x+3y+1=0,,x-3y+4=0,))
    可解得交点为eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(5,3),\f(7,9))),
    代入4x-3y+m=0得m=9,
    故所求直线方程为4x-3y+9=0.
    法三 由题意可设所求直线的方程为(2x+3y+1)+λ(x-3y+4)=0,即(2+λ)x+(3-3λ)y+1+4λ=0.①
    又因为所求直线与直线3x+4y-7=0垂直,
    所以3(2+λ)+4(3-3λ)=0,解得λ=2,
    代入①式得所求直线方程为4x-3y+9=0.
    4.(多选)已知直线l1:x+my-1=0,l2:(m-2)x+3y+3=0,则下列说法正确的是( )
    A.若l1∥l2,则m=-1或m=3
    B.若l1∥l2,则m=3
    C.若l1⊥l2,则m=-eq \f(1,2)
    D.若l1⊥l2,则m=eq \f(1,2)
    答案 BD
    解析 若l1∥l2则1×3-m(m-2)=0,解得m=3或m=-1,
    当m=-1时,l1:x-y-1=0,l2:x-y-1=0,l1与l2重合,
    ∴m=-1(舍去),故m=3,故B正确;
    若l1⊥l2,则1×(m-2)+m×3=0,解得m=eq \f(1,2),故C不正确,D正确.
    考点2 两直线的交点与距离问题
    [名师点睛]
    (1)求过两直线交点的直线方程的方法:先求出两直线的交点坐标,再结合其他条件写出直线方程.
    (2)利用距离公式应注意:①点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|;②两平行线间的距离公式要把两直线方程中x,y的系数化为相等.
    [典例]
    1.已知直线y=kx+2k+1与直线y=-eq \f(1,2)x+2的交点位于第一象限,则实数k的取值范围是________.
    答案 eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,6),\f(1,2)))
    解析 由方程组eq \b\lc\{(\a\vs4\al\c1(y=kx+2k+1,,y=-\f(1,2)x+2,))解得eq \b\lc\{(\a\vs4\al\c1(x=\f(2-4k,2k+1),,y=\f(6k+1,2k+1),))
    (若2k+1=0,即k=-eq \f(1,2),则两直线平行)
    ∴交点坐标为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2-4k,2k+1),\f(6k+1,2k+1))).又∵交点位于第一象限,∴eq \b\lc\{(\a\vs4\al\c1(\f(2-4k,2k+1)>0,,\f(6k+1,2k+1)>0,))解得-eq \f(1,6)<k<eq \f(1,2).
    2.(2023·湖州调研)已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是________.
    答案 [0,10]
    解析 由题意得,点P到直线的距离为
    eq \f(|4×4-3×a-1|,5)=eq \f(|15-3a|,5).
    又eq \f(|15-3a|,5)≤3,即|15-3a|≤15,
    解得0≤a≤10,
    所以a的取值范围是[0,10].
    3.若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为eq \f(2\r(13),13),则c的值是________.
    答案 2或-6
    解析 由题意得eq \f(3,6)=eq \f(-2,a)≠eq \f(-1,c),
    ∴a=-4,c≠-2,
    则6x+ay+c=0可化为3x-2y+eq \f(c,2)=0.
    由两平行线间的距离公式得eq \f(\b\lc\|\rc\|(\a\vs4\al\c1(\f(c,2)+1)),\r(13))=eq \f(2\r(13),13),即eq \b\lc\|\rc\|(\a\vs4\al\c1(\f(c,2)+1))=2,解得c=2或c=-6.
    [举一反三]
    1.两条平行直线2x-y+3=0和ax+3y-4=0间的距离为d,则a,d的值分别为( )
    A.a=6,d=eq \f(\r(6),3) B.a=-6,d=eq \f(\r(5),3)
    C.a=6,d=eq \f(\r(5),3) D.a=-6,d=eq \f(\r(6),3)
    答案 B
    解析 由题知2×3=-a,解得a=-6,
    又-6x+3y-4=0可化为2x-y+eq \f(4,3)=0,∴d=eq \f(\b\lc\|\rc\|(\a\vs4\al\c1(3-\f(4,3))),\r(5))=eq \f(\r(5),3).
    2.已知直线经过点(1,2),并且与点(2,3)和(0,-5)的距离相等,则此直线的方程为________________.
    答案 4x-y-2=0或x=1
    解析 若所求直线的斜率存在,则可设其方程为y-2=k(x-1),即kx-y-k+2=0,
    由题设有eq \f(|2k-3-k+2|,\r(1+k2))=eq \f(|0+5-k+2|,\r(1+k2)),
    即|k-1|=|7-k|,解得k=4.
    此时直线方程为4x-y-2=0.
    若所求直线的斜率不存在,则直线方程为x=1,满足题设条件.
    故所求直线的方程为4x-y-2=0或x=1.
    3.(多选)(2023·济南调研)已知直线l1:2x+3y-1=0和l2:4x+6y-9=0,若直线l到直线l1的距离与到直线l2的距离之比为1∶2,则直线l的方程为( )
    A.2x+3y-8=0 B.4x+6y+5=0
    C.6x+9y-10=0 D.12x+18y-13=0
    答案 BD
    解析 设直线l:4x+6y+m=0,m≠-2且m≠-9,
    直线l到直线l1和l2的距离分别为d1,d2,
    由题意知d1=eq \f(|m+2|,\r(16+36)),d2=eq \f(|m+9|,\r(16+36)).
    因为eq \f(d1,d2)=eq \f(1,2),所以eq \f(2|m+2|,\r(16+36))=eq \f(|m+9|,\r(16+36)),
    即2|m+2|=|m+9|,解得m=5或m=-eq \f(13,3),即直线l为4x+6y+5=0或12x+18y-13=0.
    考点3 对称问题
    [名师点睛]
    (1)光的反射问题实质是点关于直线的对称问题,要注意转化.
    (2)直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解.
    (3)求直线l1关于直线l对称的直线l2,有两种处理方法:
    ①在直线l1上取两点(一般取特殊点),利用求点关于直线的对称点的方法求出这两点关于直线l的对称点,再用两点式写出直线l2的方程.
    ②设点P(x,y)是直线l2上任意一点,其关于直线l的对称点为P1(x1,y1)(P1在直线l1上),根据点关于直线对称建立方程组,用x,y表示出x1,y1,再代入直线l1的方程,即得直线l2的方程.
    [典例]
    1.过点P(0,1)作直线l,使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段被点P平分,则直线l的方程为________________.
    答案 x+4y-4=0
    解析 设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即点A(4,0)在直线l上,所以直线l的方程为x+4y-4=0.
    2.已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为________.
    答案 6x-y-6=0
    解析 设点M(-3,4)关于直线l:x-y+3=0的对称点为M′(a,b),则反射光线所在直线过点M′,
    所以eq \b\lc\{(\a\vs4\al\c1(\f(b-4,a-(-3))·1=-1,,\f(-3+a,2)-\f(b+4,2)+3=0,))解得a=1,b=0.
    又反射光线经过点N(2,6),
    所以所求直线的方程为eq \f(y-0,6-0)=eq \f(x-1,2-1),
    即6x-y-6=0.
    3.直线2x-y+3=0关于直线x-y+2=0对称的直线方程是________________.
    答案 x-2y+3=0
    解析 设所求直线上任意一点P(x,y),
    点P关于x-y+2=0的对称点为P′(x0,y0),
    则eq \b\lc\{(\a\vs4\al\c1(\f(x+x0,2)-\f(y+y0,2)+2=0,,x-x0=-(y-y0),))得eq \b\lc\{(\a\vs4\al\c1(x0=y-2,,y0=x+2.))
    ∵点P′(x0,y0)在直线2x-y+3=0上,
    ∴2(y-2)-(x+2)+3=0,即x-2y+3=0.
    [举一反三]
    1.直线2x-4y-1=0关于x+y=0对称的直线方程为( )
    A.4x-2y-1=0 B.4x-2y+1=0
    C.4x+2y+1=0 D.4x+2y-1=0
    答案 A
    解析 设直线2x-4y-1=0上一点P(x0,y0)关于直线x+y=0对称的点的坐标为P′(x,y),
    则eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(y-y0,x-x0)=1,,\f(x+x0,2)+\f(y+y0,2)=0,))
    整理可得eq \b\lc\{\rc\ (\a\vs4\al\c1(x0=-y,,y0=-x,))
    ∴-2y+4x-1=0,
    即直线2x-4y-1=0关于x+y=0对称的直线方程为4x-2y-1=0.
    2.在等腰直角三角形ABC中,AB=AC=4,点P是边AB上异于A,B的一点.光线从点P出发,经BC,CA反射后又回到点P(如图所示).若光线QR经过△ABC的重心,则AP的长度为( )
    A.2 B.1 C.eq \f(8,3) D.eq \f(4,3)
    答案 D
    解析 以A为原点,AB所在直线为x轴,AC所在直线为y轴,建立如图所示的平面直角坐标系,由题意可知B(4,0),C(0,4),A(0,0),则直线BC的方程为x+y-4=0.设P(t,0)(03.已知直线l:2x-3y+1=0,点A(-1,-2).求:
    (1)点A关于直线l的对称点A′的坐标;
    (2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;
    (3)直线l关于点A的对称直线l′的方程.
    解 (1)设A′(x,y),由已知条件得
    eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(y+2,x+1)×\f(2,3)=-1,,2×\f(x-1,2)-3×\f(y-2,2)+1=0,))
    解得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=-\f(33,13),,y=\f(4,13).))∴A′eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(33,13),\f(4,13))).
    (2)在直线m上取一点,如M(2,0),
    则M(2,0)关于直线l的对称点M′必在直线m′上.
    设对称点M′(a,b),则
    eq \b\lc\{\rc\ (\a\vs4\al\c1(2×\f(a+2,2)-3×\f(b+0,2)+1=0,,\f(b-0,a-2)×\f(2,3)=-1,))
    得M′eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(6,13),\f(30,13))).
    设直线m与直线l的交点为N,
    由eq \b\lc\{\rc\ (\a\vs4\al\c1(2x-3y+1=0,,3x-2y-6=0,))得N(4,3).
    又m′经过点N(4,3),
    ∴由两点式得直线m′的方程为9x-46y+102=0.
    (3)方法一 在l:2x-3y+1=0上任取两点,
    如P(1,1),Q(4,3),则P,Q关于点A(-1,-2)的对称点P′,Q′均在直线l′上,
    易得P′(-3,-5),Q′(-6,-7),
    再由两点式可得l′的方程为2x-3y-9=0.
    方法二 ∵l∥l′,
    ∴设l′的方程为2x-3y+C=0(C≠1).
    ∵点A(-1,-2)到两直线l,l′的距离相等,
    ∴由点到直线的距离公式,
    得eq \f(|-2+6+C|,\r(22+32))=eq \f(|-2+6+1|,\r(22+32)),
    解得C=-9,∴l′的方程为2x-3y-9=0.
    方程组eq \b\lc\{(\a\vs4\al\c1(A1x+B1y+C1=0,,A2x+B2y+C2=0))的解
    一组
    无数组
    无解
    直线l1与l2的公共点的个数
    一个
    无数个
    零个
    直线l1与l2的位置关系
    相交
    重合
    平行
    相关试卷

    高考数学一轮复习考点探究与题型突破第42讲直线、平面垂直的判定与性质(原卷版+解析): 这是一份高考数学一轮复习考点探究与题型突破第42讲直线、平面垂直的判定与性质(原卷版+解析),共22页。试卷主要包含了直线与平面垂直,直线和平面所成的角,二面角,平面与平面垂直等内容,欢迎下载使用。

    高考数学一轮复习考点探究与题型突破第41讲直线、平面平行的判定与性质(原卷版+解析): 这是一份高考数学一轮复习考点探究与题型突破第41讲直线、平面平行的判定与性质(原卷版+解析),共16页。试卷主要包含了直线与平面平行,平面与平面平行等内容,欢迎下载使用。

    高考数学一轮复习考点探究与题型突破第40讲空间点、直线、平面之间的位置关系(原卷版+解析): 这是一份高考数学一轮复习考点探究与题型突破第40讲空间点、直线、平面之间的位置关系(原卷版+解析),共17页。试卷主要包含了与平面有关的基本事实及推论,基本事实4和等角定理,异面直线所成的角等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学一轮复习考点探究与题型突破第47讲两直线的位置关系(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map