高考数学微专题集专题8利用仿射变换轻松解决圆锥曲线问题微点3(原卷版+解析)
展开微点3 利用仿射变换轻松解决圆锥曲线问题综合训练
1.已知直线l与椭圆交于M,N两点,当______,面积最大,并且最大值为______.记,当面积最大时,_____﹐_______.Р是椭圆上一点,,当面积最大时,______.
2.过椭圆的右焦点F的直线与椭圆交于A,B两点,则面积最大值为_______.
3.已知A,B,C分别是椭圆上的三个动点,则面积最大值为_____________.
4.已知椭圆左顶点为,为椭圆上两动点,直线交于,直线交于,直线的斜率分别为且, (是非零实数),求______________.
5.已知椭圆C:,A,B是椭圆C上两点,且关于点对称,P是椭圆C外一点,满足,的中点均在椭圆C上,则点P的坐标是___________.
6.已知椭圆,分别为椭圆左右焦点,过作两条互相平行的弦,分别与椭圆交于四点,若当两条弦垂直于轴时,点所形成的平行四边形面积最大,则椭圆离心率的取值范围为______________.
7.已知椭圆C:过点A(2,0),B(0,1)两点.
(1)求椭圆C的方程及离心率;
(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.
8.已知椭圆:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:与椭圆有且只有一个公共点T.
(Ⅰ)求椭圆的方程及点的坐标;
(Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点、,且与直线交于点,证明:存在常数,使得,并求的值.
9.分别是椭圆于的左、右焦点.
(1)若Р是该椭圆上的一个动点,求的取值范围;
(2)设是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.
10.已知圆:,定点,是圆上的一动点,线段的垂直平分线交半径于点.
(1)求点的轨迹的方程;
(2)四边形的四个顶点都在曲线上,且对角线、过原点,若,求证:四边形的面积为定值,并求出此定值.
专题8 利用仿射变换轻松解决圆锥曲线问题 微点3 利用仿射变换轻松解决圆锥曲线问题综合训练
专题8 利用仿射变换轻松解决圆锥曲线问题
微点3 利用仿射变换轻松解决圆锥曲线问题综合训练
1.已知直线l与椭圆交于M,N两点,当______,面积最大,并且最大值为______.记,当面积最大时,_____﹐_______.Р是椭圆上一点,,当面积最大时,______.
2.过椭圆的右焦点F的直线与椭圆交于A,B两点,则面积最大值为_______.
3.已知A,B,C分别是椭圆上的三个动点,则面积最大值为_____________.
4.已知椭圆左顶点为,为椭圆上两动点,直线交于,直线交于,直线的斜率分别为且, (是非零实数),求______________.
5.已知椭圆C:,A,B是椭圆C上两点,且关于点对称,P是椭圆C外一点,满足,的中点均在椭圆C上,则点P的坐标是___________.
6.已知椭圆,分别为椭圆左右焦点,过作两条互相平行的弦,分别与椭圆交于四点,若当两条弦垂直于轴时,点所形成的平行四边形面积最大,则椭圆离心率的取值范围为______________.
7.已知椭圆C:过点A(2,0),B(0,1)两点.
(1)求椭圆C的方程及离心率;
(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.
8.已知椭圆:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:与椭圆有且只有一个公共点T.
(Ⅰ)求椭圆的方程及点的坐标;
(Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点、,且与直线交于点,证明:存在常数,使得,并求的值.
9.分别是椭圆于的左、右焦点.
(1)若Р是该椭圆上的一个动点,求的取值范围;
(2)设是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.
10.已知圆:,定点,是圆上的一动点,线段的垂直平分线交半径于点.
(1)求点的轨迹的方程;
(2)四边形的四个顶点都在曲线上,且对角线、过原点,若,求证:四边形的面积为定值,并求出此定值.
参考答案:
1. 4 2 1
分析:作伸缩变换,将椭圆变为圆,根据三角形面积公式求得当时,最大,进而依次计算可得.
【详解】作变换此时椭圆变为圆,方程为,
当时,最大,并且最大为,
此时,.
由于,,
∴,
,
因为,所以
.
故答案为:;;4;2;1.
2.##
分析:利用仿射变换,将椭圆变换为圆,利用圆的性质求出面积的最大值,从而可求出面积最大值
【详解】作变换之后椭圆变为圆,方程为,,
由于,因此时面积最大,
此时,
那么,
故答案为:
3.##4.5
分析:作变换之后椭圆变为圆,方程为,是圆的内接三角形,圆的内接三角形面积最大时为等边三角形,则,求出,代入即可得出答案.
【详解】作变换之后椭圆变为圆,方程为,
是圆的内接三角形,设的半径为,
设所对应边长为,所以
,当且仅当时取等,
因为在上为凸函数,则,
,当且仅当时取等,
所以圆的内接三角形面积最大时为等边三角形,因此,又因为,
∴.
故答案为:.
4.1
分析:设,由以及解出,代入椭圆方程求出;同理可得;进而求出的值.
【详解】解法1:可得点,设,则,
由可得,即有,
,,两边同乘以,可得,解得,将代入椭圆方程可得,由可得,可得;
故答案为:.
解法2:作变换之后椭圆变为圆,方程为,
,
设,则,
,
∴,
,
∴.
故答案为:.
5.或.
【解析】先利用点差法可求出直线AB的斜率为,即可得出直线方程,代入椭圆方程可求出A,B坐标,设出点P,则可表示出PA,PB中点坐标,代入椭圆方程即可求出点P坐标.
【详解】设, A,B是椭圆C上两点,
则,两式相减得,
是AB中点,则,即,
故直线AB斜率为,则直线AB方程为,即,
将直线方程代入椭圆得,解得,
则可得,
设,则PA中点为,PB中点为,
,的中点均在椭圆C上,
则,解得或,
的坐标为或.
故答案为:或.
【点睛】本题考查中点弦问题,解题的关键是先利用点差法求出直线斜率,进而求出A,B坐标,再结合题意求解.
6.
分析:利用仿射变换将椭圆变换为圆,此时四点分别变换为四点,由仿射变换时变换前后对应图形的面积比不变这个性质,故将上述题目中的椭圆变换为圆时,四点所形成的平行四边形面积最大值仍在两条弦与轴垂直时取到,故只需研究在圆的一条直径上,取关于圆心对称的两点,当为多少时,能使得过的两条互相平行的弦与此直径垂直时刻,与圆的四个交点所形成的面积最大.
【详解】作仿射变换,令,可得仿射坐标系,在此坐标系中,上述椭圆变换为圆,点坐标分别为,过作两条平行的弦分别与圆交于四点.
由平行四边形性质易知,三角形的面积为四点所形成的平行四边形面积的,故只需令三角形面积的最大值在弦与轴垂直时取到即可.当时,三角形面积的最大值在弦与轴垂直时取到.
故此题离心率的取值范围为.
故答案为:.
7.(1);;
(2)证明见解析.
分析:(1)由顶点可求a和b,由可求c,则椭圆的方程可求,离心率为可求;
(2)设,,求出、所在直线方程,得到,的坐标,求得,.由,结合在椭圆上求得四边形的面积为定值.
(1)
由题可知,,则,
椭圆的方程为,离心率为;
(2)
设,,则,所在直线方程为,
取,得;
,所在直线方程为,
取,得.
,.
.
四边形的面积为定值2.
【点睛】解决定值定点方法一般有两种:
(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;
(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.
8.(Ⅰ),点T坐标为(2,1);(Ⅱ).
【详解】试题分析:本题考查椭圆的标准方程及其几何性质,考查学生的分析问题、解决问题的能力和数形结合的思想.第(Ⅰ)问,利用直线和椭圆只有一个公共点,联立方程,消去y得关于x的方程有两个相等的实数根,解出b的值,从而得到椭圆E的方程;第(Ⅱ)问,利用椭圆的几何性质,数形结合,根据根与系数的关系,进行求解.
试题解析:(Ⅰ)由已知,,则椭圆E的方程为.
由方程组 得.①
方程①的判别式为,由,得,
此时方程①的解为,
所以椭圆E的方程为.
点T坐标为(2,1).
(Ⅱ)由已知可设直线的方程为,
由方程组 可得
所以P点坐标为(),.
设点A,B的坐标分别为.
由方程组 可得.②
方程②的判别式为,由,解得.
由②得.
所以,
同理,
所以
.
故存在常数,使得.
【考点】椭圆的标准方程及其几何性质
【名师点睛】本题考查椭圆的标准方程及其几何性质,考查学生的分析问题、解决问题的能力和数形结合的思想.在涉及直线与椭圆(圆锥曲线)的交点问题时,一般设交点坐标为,同时把直线方程与椭圆方程联立,消元后,可得,再把用表示出来,并代入的值,这种方法是解析几何中的“设而不求”法,可减少计算量,简化解题过程.
9.(1)
(2)
分析:(1)由题意可知、的坐标,设,表示出,,代入向量的数量积可得,由二次函数的性质计算可得.
(2)设,,联立直线与椭圆方程消去整理可得,解方程可求,,根据点到直线的距离公式可求,点,到直线的距离,,代入四边形的面积为,结合基本不等式可求面积的最大值.
(1)
解:由题意可知,,
,,设,
,,
由椭圆的性质可知,
,
,故,即.
(2)
解:设,,联立消去整理可得,
,,
,,
直线的方程为:,
根据点到直线的距离公式可知,点,到直线的距离分别为
,
,
,
,
四边形的面积为
,当且仅当即时,上式取等号,
所以的最大值为.
10.(1);(2)证明详见解析,定值为.
分析:(1)利用椭圆的定义即可得到点的轨迹的方程;
(2)不妨设点、位于轴的上方,则直线的斜率存在,设的方程为,与椭圆方程联立,求出四边形的面积,即可证明结论.
【详解】(1)因为在线段的中垂线上,所以.
所以,
所以轨迹是以,为焦点的椭圆,且,,所以,
故轨迹的方程.
(2)不妨设点、位于轴的上方,则直线的斜率存在,设的方程为
,,.
联立,得,
则,.①
由,
得.②
由①、②,得.③
设原点到直线的距离为,
,
.④
由③、④,得,故四边形的面积为定值,且定值为.
【点睛】本题主要考查直线与椭圆的位置关系中的定值问题,此类问题一般要涉及根与系数的关系,考查学生的数学运算求解能力,是一道中档题.
高考数学微专题集专题7圆锥曲线之极点与极线微点3圆锥曲线之极点与极线综合训练(原卷版+解析): 这是一份高考数学微专题集专题7圆锥曲线之极点与极线微点3圆锥曲线之极点与极线综合训练(原卷版+解析),共19页。试卷主要包含了已知椭圆的离心率为,短轴长为,已知椭圆C,已知曲线.等内容,欢迎下载使用。
高考数学微专题集专题2蒙日圆微点3蒙日圆综合训练(原卷版+解析): 这是一份高考数学微专题集专题2蒙日圆微点3蒙日圆综合训练(原卷版+解析),共45页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。
专题15 利用仿射变换轻松解决圆锥曲线问题综合训练: 这是一份专题15 利用仿射变换轻松解决圆锥曲线问题综合训练,共14页。