终身会员
搜索
    上传资料 赚现金
    高考数学微专题集专题8利用仿射变换轻松解决圆锥曲线问题微点3(原卷版+解析)
    立即下载
    加入资料篮
    高考数学微专题集专题8利用仿射变换轻松解决圆锥曲线问题微点3(原卷版+解析)01
    高考数学微专题集专题8利用仿射变换轻松解决圆锥曲线问题微点3(原卷版+解析)02
    高考数学微专题集专题8利用仿射变换轻松解决圆锥曲线问题微点3(原卷版+解析)03
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学微专题集专题8利用仿射变换轻松解决圆锥曲线问题微点3(原卷版+解析)

    展开
    这是一份高考数学微专题集专题8利用仿射变换轻松解决圆锥曲线问题微点3(原卷版+解析),共15页。试卷主要包含了已知椭圆C,已知椭圆,分别是椭圆于的左、右焦点.,已知圆等内容,欢迎下载使用。

    微点3 利用仿射变换轻松解决圆锥曲线问题综合训练
    1.已知直线l与椭圆交于M,N两点,当______,面积最大,并且最大值为______.记,当面积最大时,_____﹐_______.Р是椭圆上一点,,当面积最大时,______.
    2.过椭圆的右焦点F的直线与椭圆交于A,B两点,则面积最大值为_______.
    3.已知A,B,C分别是椭圆上的三个动点,则面积最大值为_____________.
    4.已知椭圆左顶点为,为椭圆上两动点,直线交于,直线交于,直线的斜率分别为且, (是非零实数),求______________.
    5.已知椭圆C:,A,B是椭圆C上两点,且关于点对称,P是椭圆C外一点,满足,的中点均在椭圆C上,则点P的坐标是___________.
    6.已知椭圆,分别为椭圆左右焦点,过作两条互相平行的弦,分别与椭圆交于四点,若当两条弦垂直于轴时,点所形成的平行四边形面积最大,则椭圆离心率的取值范围为______________.
    7.已知椭圆C:过点A(2,0),B(0,1)两点.
    (1)求椭圆C的方程及离心率;
    (2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.
    8.已知椭圆:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:与椭圆有且只有一个公共点T.
    (Ⅰ)求椭圆的方程及点的坐标;
    (Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点、,且与直线交于点,证明:存在常数,使得,并求的值.
    9.分别是椭圆于的左、右焦点.
    (1)若Р是该椭圆上的一个动点,求的取值范围;
    (2)设是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.
    10.已知圆:,定点,是圆上的一动点,线段的垂直平分线交半径于点.
    (1)求点的轨迹的方程;
    (2)四边形的四个顶点都在曲线上,且对角线、过原点,若,求证:四边形的面积为定值,并求出此定值.
    专题8 利用仿射变换轻松解决圆锥曲线问题 微点3 利用仿射变换轻松解决圆锥曲线问题综合训练
    专题8 利用仿射变换轻松解决圆锥曲线问题
    微点3 利用仿射变换轻松解决圆锥曲线问题综合训练
    1.已知直线l与椭圆交于M,N两点,当______,面积最大,并且最大值为______.记,当面积最大时,_____﹐_______.Р是椭圆上一点,,当面积最大时,______.
    2.过椭圆的右焦点F的直线与椭圆交于A,B两点,则面积最大值为_______.
    3.已知A,B,C分别是椭圆上的三个动点,则面积最大值为_____________.
    4.已知椭圆左顶点为,为椭圆上两动点,直线交于,直线交于,直线的斜率分别为且, (是非零实数),求______________.
    5.已知椭圆C:,A,B是椭圆C上两点,且关于点对称,P是椭圆C外一点,满足,的中点均在椭圆C上,则点P的坐标是___________.
    6.已知椭圆,分别为椭圆左右焦点,过作两条互相平行的弦,分别与椭圆交于四点,若当两条弦垂直于轴时,点所形成的平行四边形面积最大,则椭圆离心率的取值范围为______________.
    7.已知椭圆C:过点A(2,0),B(0,1)两点.
    (1)求椭圆C的方程及离心率;
    (2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.
    8.已知椭圆:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:与椭圆有且只有一个公共点T.
    (Ⅰ)求椭圆的方程及点的坐标;
    (Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点、,且与直线交于点,证明:存在常数,使得,并求的值.
    9.分别是椭圆于的左、右焦点.
    (1)若Р是该椭圆上的一个动点,求的取值范围;
    (2)设是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.求四边形AEBF面积的最大值.
    10.已知圆:,定点,是圆上的一动点,线段的垂直平分线交半径于点.
    (1)求点的轨迹的方程;
    (2)四边形的四个顶点都在曲线上,且对角线、过原点,若,求证:四边形的面积为定值,并求出此定值.
    参考答案:
    1. 4 2 1
    分析:作伸缩变换,将椭圆变为圆,根据三角形面积公式求得当时,最大,进而依次计算可得.
    【详解】作变换此时椭圆变为圆,方程为,
    当时,最大,并且最大为,
    此时,.
    由于,,
    ∴,

    因为,所以
    .
    故答案为:;;4;2;1.
    2.##
    分析:利用仿射变换,将椭圆变换为圆,利用圆的性质求出面积的最大值,从而可求出面积最大值
    【详解】作变换之后椭圆变为圆,方程为,,
    由于,因此时面积最大,
    此时,
    那么,
    故答案为:
    3.##4.5
    分析:作变换之后椭圆变为圆,方程为,是圆的内接三角形,圆的内接三角形面积最大时为等边三角形,则,求出,代入即可得出答案.
    【详解】作变换之后椭圆变为圆,方程为,
    是圆的内接三角形,设的半径为,
    设所对应边长为,所以
    ,当且仅当时取等,
    因为在上为凸函数,则,
    ,当且仅当时取等,
    所以圆的内接三角形面积最大时为等边三角形,因此,又因为,
    ∴.
    故答案为:.
    4.1
    分析:设,由以及解出,代入椭圆方程求出;同理可得;进而求出的值.
    【详解】解法1:可得点,设,则,
    由可得,即有,
    ,,两边同乘以,可得,解得,将代入椭圆方程可得,由可得,可得;
    故答案为:.
    解法2:作变换之后椭圆变为圆,方程为,

    设,则,

    ∴,

    ∴.
    故答案为:.
    5.或.
    【解析】先利用点差法可求出直线AB的斜率为,即可得出直线方程,代入椭圆方程可求出A,B坐标,设出点P,则可表示出PA,PB中点坐标,代入椭圆方程即可求出点P坐标.
    【详解】设, A,B是椭圆C上两点,
    则,两式相减得,
    是AB中点,则,即,
    故直线AB斜率为,则直线AB方程为,即,
    将直线方程代入椭圆得,解得,
    则可得,
    设,则PA中点为,PB中点为,
    ,的中点均在椭圆C上,
    则,解得或,
    的坐标为或.
    故答案为:或.
    【点睛】本题考查中点弦问题,解题的关键是先利用点差法求出直线斜率,进而求出A,B坐标,再结合题意求解.
    6.
    分析:利用仿射变换将椭圆变换为圆,此时四点分别变换为四点,由仿射变换时变换前后对应图形的面积比不变这个性质,故将上述题目中的椭圆变换为圆时,四点所形成的平行四边形面积最大值仍在两条弦与轴垂直时取到,故只需研究在圆的一条直径上,取关于圆心对称的两点,当为多少时,能使得过的两条互相平行的弦与此直径垂直时刻,与圆的四个交点所形成的面积最大.
    【详解】作仿射变换,令,可得仿射坐标系,在此坐标系中,上述椭圆变换为圆,点坐标分别为,过作两条平行的弦分别与圆交于四点.
    由平行四边形性质易知,三角形的面积为四点所形成的平行四边形面积的,故只需令三角形面积的最大值在弦与轴垂直时取到即可.当时,三角形面积的最大值在弦与轴垂直时取到.
    故此题离心率的取值范围为.
    故答案为:.
    7.(1);;
    (2)证明见解析.
    分析:(1)由顶点可求a和b,由可求c,则椭圆的方程可求,离心率为可求;
    (2)设,,求出、所在直线方程,得到,的坐标,求得,.由,结合在椭圆上求得四边形的面积为定值.
    (1)
    由题可知,,则,
    椭圆的方程为,离心率为;
    (2)
    设,,则,所在直线方程为,
    取,得;
    ,所在直线方程为,
    取,得.
    ,.

    四边形的面积为定值2.
    【点睛】解决定值定点方法一般有两种:
    (1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;
    (2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.
    8.(Ⅰ),点T坐标为(2,1);(Ⅱ).
    【详解】试题分析:本题考查椭圆的标准方程及其几何性质,考查学生的分析问题、解决问题的能力和数形结合的思想.第(Ⅰ)问,利用直线和椭圆只有一个公共点,联立方程,消去y得关于x的方程有两个相等的实数根,解出b的值,从而得到椭圆E的方程;第(Ⅱ)问,利用椭圆的几何性质,数形结合,根据根与系数的关系,进行求解.
    试题解析:(Ⅰ)由已知,,则椭圆E的方程为.
    由方程组 得.①
    方程①的判别式为,由,得,
    此时方程①的解为,
    所以椭圆E的方程为.
    点T坐标为(2,1).
    (Ⅱ)由已知可设直线的方程为,
    由方程组 可得
    所以P点坐标为(),.
    设点A,B的坐标分别为.
    由方程组 可得.②
    方程②的判别式为,由,解得.
    由②得.
    所以,
    同理,
    所以
    .
    故存在常数,使得.
    【考点】椭圆的标准方程及其几何性质
    【名师点睛】本题考查椭圆的标准方程及其几何性质,考查学生的分析问题、解决问题的能力和数形结合的思想.在涉及直线与椭圆(圆锥曲线)的交点问题时,一般设交点坐标为,同时把直线方程与椭圆方程联立,消元后,可得,再把用表示出来,并代入的值,这种方法是解析几何中的“设而不求”法,可减少计算量,简化解题过程.
    9.(1)
    (2)
    分析:(1)由题意可知、的坐标,设,表示出,,代入向量的数量积可得,由二次函数的性质计算可得.
    (2)设,,联立直线与椭圆方程消去整理可得,解方程可求,,根据点到直线的距离公式可求,点,到直线的距离,,代入四边形的面积为,结合基本不等式可求面积的最大值.
    (1)
    解:由题意可知,,
    ,,设,
    ,,
    由椭圆的性质可知,

    ,故,即.
    (2)
    解:设,,联立消去整理可得,
    ,,
    ,,
    直线的方程为:,
    根据点到直线的距离公式可知,点,到直线的距离分别为




    四边形的面积为
    ,当且仅当即时,上式取等号,
    所以的最大值为.
    10.(1);(2)证明详见解析,定值为.
    分析:(1)利用椭圆的定义即可得到点的轨迹的方程;
    (2)不妨设点、位于轴的上方,则直线的斜率存在,设的方程为,与椭圆方程联立,求出四边形的面积,即可证明结论.
    【详解】(1)因为在线段的中垂线上,所以.
    所以,
    所以轨迹是以,为焦点的椭圆,且,,所以,
    故轨迹的方程.
    (2)不妨设点、位于轴的上方,则直线的斜率存在,设的方程为
    ,,.
    联立,得,
    则,.①
    由,
    得.②
    由①、②,得.③
    设原点到直线的距离为,

    .④
    由③、④,得,故四边形的面积为定值,且定值为.
    【点睛】本题主要考查直线与椭圆的位置关系中的定值问题,此类问题一般要涉及根与系数的关系,考查学生的数学运算求解能力,是一道中档题.
    相关试卷

    高考数学微专题集专题7圆锥曲线之极点与极线微点3圆锥曲线之极点与极线综合训练(原卷版+解析): 这是一份高考数学微专题集专题7圆锥曲线之极点与极线微点3圆锥曲线之极点与极线综合训练(原卷版+解析),共19页。试卷主要包含了已知椭圆的离心率为,短轴长为,已知椭圆C,已知曲线.等内容,欢迎下载使用。

    高考数学微专题集专题2蒙日圆微点3蒙日圆综合训练(原卷版+解析): 这是一份高考数学微专题集专题2蒙日圆微点3蒙日圆综合训练(原卷版+解析),共45页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    专题15 利用仿射变换轻松解决圆锥曲线问题综合训练: 这是一份专题15 利用仿射变换轻松解决圆锥曲线问题综合训练,共14页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学微专题集专题8利用仿射变换轻松解决圆锥曲线问题微点3(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map