所属成套资源:2024年新高一数学暑假衔接知识回顾与新课预习
- 3.2.2 奇偶性( 六种常考题型)- 【初升高衔接】2024年新高一数学暑假衔接知识回顾与新课预习(人教A版2019) 试卷 0 次下载
- 3.3 幂函数(九种常考题型)- 【初升高衔接】2024年新高一数学暑假衔接知识回顾与新课预习(人教A版2019) 试卷 0 次下载
- 函数的概念与性质章节检测卷-【初升高衔接】2024年新高一数学暑假衔接知识回顾与新课预习(人教A版2019) 试卷 0 次下载
- 初高衔接( 六种题型)-【初升高衔接】2024年新高一数学暑假衔接知识回顾与新课预习(人教A版2019) 试卷 0 次下载
- 第一至三章综合检测卷-【初升高衔接】2024年新高一数学暑假衔接知识回顾与新课预习(人教A版2019) 试卷 0 次下载
3.4 函数的应用(一)(四种常考题型)-【初升高衔接】2024年新高一数学暑假衔接知识回顾与新课预习(人教A版2019)
展开
这是一份3.4 函数的应用(一)(四种常考题型)-【初升高衔接】2024年新高一数学暑假衔接知识回顾与新课预习(人教A版2019),文件包含34函数的应用一四种常考题型原卷版docx、34函数的应用一四种常考题型解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
知识点 几类常见的函数模型
题型一用一、二次函数模型解决实际问题
1.如图是下水道的一种横截面,上部为半圆,下部为矩形,若矩形下底边长为,此横截面面积为y,周长为l(常量),求:
(1)y与x之间的函数表达式及其定义域;
(2)的最大值.
2.有甲、乙两种商品,经营这两种商品所能获得的利润分别记为p(万元)和q(万元),它们与投入的资金M(万元)的关系近似满足下列公式:,现有万元资金投入经营这两种商品,为获得最大的利润,应对这两种商品分别投入资金多少万元?获得的最大利润是多少万元?
3.由于惯性作用,行驶中的汽车在刹车后要滑行一段距离才能停下,这段距离叫做刹车距离.下表是对某种型号汽车刹车性能的测试数据.
(1)试选择合适的函数模型拟合测试数据,并写出函数解析式;
(2)若车速为,刹车距离为多少?若测得刹车距离为,刹车时的车速是多少?(可以使用计算器辅助计算)
4.改革开放四十周年纪念币从2018年12月5日起可以开始预约.通过市场调查,得到该纪念章每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
(1)根据上表数据,从下列函数:①;②中选取一个恰当的函数刻画纪念章市场价y与上市时间x的变化关系,并说明理由;
(2)利用你选取的函数,求纪念章市场价的最低价格及其上市天数.
5.如图,在一直角墙角内的点P处有一棵树,它与两墙的距离分别是3米和2米.现欲用10米长的篱笆,借助墙角围成一个矩形的花圃,要求这棵树被围在花圃内或边界上.设米,则矩形花圃的面积 (单位:平方米)为( )
A.B.
C.D.
6.某自来水厂的蓄水池中存有水400吨,水厂每小时向蓄水池注水60吨,而蓄水池1小时内向居民小区供水总量为吨().若蓄水池中的水量少于80吨,就会出现供水紧张,则在一天24小时内,出现供水紧张的时长约为( )
A.6小时B.7小时C.8小时D.9小时
7.小明同学想知道自家煤气灶旋钮放到什么位置时,烧开一壶水最省燃气,于是通过实验统计了旋钮的转角为、、、、时,烧开一壶水所耗燃气情况:
请选择合适的函数模拟拟合以上数据,由此计算:旋钮的转角为多少度时,烧开一壶水所耗然气最少?最少燃气为多少立方米?
8.某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为_________.
题型二用幂函数模型解决实际问题
9.2020年底,国务院扶贫办确定的贫困县全部脱贫摘帽,脱贫攻坚取得重大胜利!为进一步巩固脱贫攻坚成果,持续实施乡村振兴战略,某企业响应政府号召,积极参与帮扶活动.该企业2021年初有资金150万元,资金的年平均增长率固定,每三年政府将补贴10万元.若要实现2024年初的资金达到270万元的目标,资金的年平均增长率应为(参考值:)( )
A.10%B.20%C.22%D.32%
10.北京冬奥会已于月日开幕,“冬奥热”在国民中迅速升温,与冬奥会相关的周边产品也销量上涨.因可爱而闻名的冰墩墩更是成为世界顶流,在国内外深受大家追捧.对某商户所售的冰墩墩在过去的一个月内(以天计)的销售情况进行调查发现:冰墩墩的日销售单价(元/套)与时间(被调查的一个月内的第天)的函数关系近似满足(常数),冰墩墩的日销量(套)与时间的部分数据如表所示:
已知第天该商品日销售收入为元,现有以下三种函数模型供选择:
①,②,③
(1)选出你认为最合适的一种函数模型,来描述销售量与时间的关系,并说明理由;
(2)根据你选择的模型,预估该商品的日销售收入(,)在哪天达到最低.
11.异速生长规律描述生物的体重与其它生理属性之间的非线性数量关系通常以幂函数形式表示.比如,某类动物的新陈代谢率与其体重满足,其中和为正常数,该类动物某一个体在生长发育过程中,其体重增长到初始状态的16倍时,其新陈代谢率仅提高到初始状态的8倍,则为( )
A.B.C.D.
12.到学校附近的农村、工厂、商店、机关作调查,了解函数模型在生产生活中的应用,收集一些生活中的函数模型(指数函数、对数函数、幂函数、分段函数等)实例,并做出分析,写成调查报告.
练习下表给出了八大行星与冥王星离太阳的距离和它们运行的周期,试建立这两组数据之间的关系.
13.党的十九大报告明确要求继续深化国有企业改革,培育具有全球竞争力的世界一流企业.某企业抓住机遇推进生产改革,从单一产品转为生产A、B两种产品,根据市场调查与市场预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②(注:所示图中的横坐标表示投资金额,单位为万元).
(1)分别求出A、B两种产品的利润表示为投资的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少?
14.果园A占地约3000亩,拟选用果树B进行种植,在相同种植条件下,果树B每亩最多可种植40棵,种植成本(万元)与果树数量(百棵)之间的关系如下表所示.
(1)根据以上表格中的数据判断:与哪一个更适合作为与的函数模型;
(2)已知该果园的年利润(万元)与的关系为,则果树数量为多少时年利润最大?
题型三用分段函数模型解决实际问题
15.厦门市实行“阶梯水价”,具体收费标准如表所示
若小曾同学用水量为16,则应交水费( )(单位:元)
A.48B.60C.72D.80
16.某公司按销售额给销售员提成作奖金,每月的基本销售额为20万元,超额中的第一个5万元(含5万元以下),按超额部分的提成作奖金;超额中的第二个5万元,按超额部分的 提成作奖金;……后每增加5万元,其提成比例也增加一个.如销售员某月销售额为27万元,则按照合约,他可得奖金为元.试求:
(1)销售员某月获得奖金7200元,则他该月的销售额为多少?
(2)若某销售员、月份的总销售额为60万元,且两月都完成基本销售额,那么他这两个月的总奖金的最大、最小值分别是多少?
17.某厂生产某种零件,每个零件的成本为4元,出厂单价6元,该厂为鼓励销售商订购,决定当一次订购超过100个时,每多订购一个,零件的出厂单价就降低0.01元,但实际出厂价不低于5元.
(1)当一次订购量为多少时,零件的实际出厂单价降为5元?
(2)设一次订购量为x个,零件的实际出厂单价为元,求函数的表达式;
(3)销售商一次订购150个零件时,该厂获得的利润是多少元?若订购500个呢?
18.依法纳税是每个公民应尽的义务,根据《中华人民共和国个人所得税法》,自2019年1月1日起,以居民个人每一纳税年度的综合所得收入额减除费用六万元以及专项扣除、专项附加扣除和依法确定的其他扣除后的余额作为应纳税所得额,按照百分之三至百分之四十五的超额累进税率(见下表),计算个人所得税.
若小明全年缴纳的综合所得个税为元,其中专项扣除占全年综合所得收入额的,专项附加扣除和依法确定的其他扣除为五万元,则小明全年综合所得收入额为_______万元.
19.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/时)是关于车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米,造成阻塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时,研究表明,当时,车流速度v是车流密度x的一次函数.
(1)当时,求函数的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)可以达到最大?并求出最大值.(结果精确到1辆/时)
20.近年来,网龙已成为全球在线及移动互联网教育行业的主要参与者,教育版图至今已覆盖192个国家.网龙协助政府打造面向全球的“中国·福建VR产业基地”,同时,网龙还将以“智能教育”为产业依托,在福州滨海新城打造国际未来教育之都——网龙教育小镇.网龙公司研发一种新产品,生产的固定成本为15000元,每生产一台产品须额外增加投入2000元,鉴于市场等多因素,根据初步测算,当每月产量为台时,总收入(单位:元)满足函数:,设其利润为,(利润=总收入-总成本)
(1)求关于的函数关系式;
(2)如何安排当月产量公司获利润最大?最大利润是多少?
题型四用函数函数模型解决实际问题
21.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为100吨,最多为600吨,月处理成本(元)与月处理量x(吨)之间的函数关系可近似地表示为.
(1)该单位每月处理量为多少吨时,才能使月处理成本最低?月处理成本最低是多少元?
(2)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?每吨的平均处理成本最低是多少元?
22.华为消费者业务产品全面覆盖手机、移动宽带终端、终端云等,凭借自身的全球化网络优势、全球化运营能力,致力于将最新的科技带给消费者,让世界各地享受到技术进步的喜悦,以行践言,实现梦想.已知华为公司生产mate系列的某款手机的年固定成本为200万元,每生产1只还需另投入80元.设华为公司一年内共生产该款手机x万只并全部销售完,每万只的销售收入为万元,且
(1)写出年利润(万元)关于年产量(万只)的函数解析式;
(2)当年产量为多少万只时,华为公司在该款手机的生产中所获得的利润最大?并求出最大利润.
23.喝酒不开车,开车不喝酒.若某人饮酒后,欲从相距的某地聘请代驾司机帮助其返程.假设当地道路限速.油价为每升8元,当汽车以的速度行驶时,油耗率为.已知代驾司机按每小时56元收取代驾费,试确定最经济的车速,使得本次行程的总费用最少,并求最小费用.
24.某单位为了解决职工的住房问题,计划征用一块土地盖一幢总建筑面积为30000平方米的宿舍楼(每层的建筑面积相同).已知土地的征用费为2250元/平方米,土地的征用面积为第一层的1.5倍.经工程技术人员核算,第一层的建筑费用为400元/平方米,以后每增高一层,该层建筑费用就增加30元/平方米.试设计这幢宿舍楼的楼层数,使总费用最少,并求出其最少费用.(总费用为建筑费用和征地费用之和).
25.现在网络购物方便快捷,得益于快递行业的快速发展,根据大数据统计,某条快递线路运行时,发车时间间隔t(单位:分钟)满足:,平均每趟快递车辆的载件个数(单位:个)与发车时间间隔t近似地满足,其中.
(1)若平均每趟快递车辆的载件个数不超过1500个,试求发车时间间隔t的值;
(2)若平均每趟快递车辆每分钟的净收益(单位:元),问当发车时间间隔t为多少时,平均每趟快递车辆每分钟的净收益最大?并求出最大净收益.
26.某乡镇卫生院为响应政府号召,决定在院内投资96000元建一个长方体的新冠疫苗接种点,其高度3米,它的后墙利用旧墙不花钱,正面用塑钢每平方400元,两侧墙砌砖,每平方造价450元,顶部每平米造价600元,设正面长为x米,每侧砖墙长均为y米.
(1)用x表示y,并写出x的范围;
(2)求出新冠疫苗接种点占地面积S的最大允许值是多少?此时正面长应设计为多少米?
27.某单位购入了一种新型的空气消毒剂用于环境消毒,已知在一定范围内,每喷洒1个单位的消毒剂,空气中释放的浓度(单位:毫米/立方米)随着时间(单位:小时)变化的关系如下:当时,;当时,.若多次喷洒,则某一时刻空气中的消毒剂浓度为每次投放的消毒剂在相应时刻所释放的浓度之和.由实验知,当空气中消毒剂的浓度不低于4(毫克/立方米)时,它才能起到杀灭空气中的病毒的作用.
(1)若一次喷洒4个单位的消毒剂,则有效杀灭时间可达几小时?
(2)若第一次喷洒2个单位的消毒剂,6小时后再喷洒个单位的消毒剂,要使接下来的4小时中能够持续有效消毒,试求的最小值(精确到0.1,参考数据:取1.4)名字
解析式
条件
一次函数模型
反比例函数模型
二次函数模型
一般式:
顶点式:
幂函数模型
分段函数模型
刹车时车速
15
30
40
50
60
80
刹车距离
1.23
6.20
11.5
17.80
25.20
44.40
上市时间x(天)
8
10
32
市场价y(元)
82
60
82
旋钮的转角
(单位:度)
18
36
54
72
90
所耗燃气量
(单位:)
0.130
0.122
0.139
0.149
0.172
(套)
水星
金星
地球
火星
木星
土星
天王星
海王星
冥王星
距离/
57.9
108.2
149.6
227.9
778.3
1427
2870
4497
5907
周期/d
88
225
365
687
4329
10753
30660
60150
90670
1
4
9
16
1
不超过12的部分
3元/
超过12不超过18的部分
6元/
超过18的部分
9元/
级数
全年应纳税所得收入额
税率(%)
1
不超过36000元的
3
2
超过36000元至144000元的部分
10
3
超过144000元至300000元的部分
20
4
超过300000元至420000元的部分
25
5
超过420000元至660000元的部分
30
6
超过660000元至960000元的部分
35
7
超过960000元的部分
45
相关试卷
这是一份3.3 幂函数(九种常考题型)- 【初升高衔接】2024年新高一数学暑假衔接知识回顾与新课预习(人教A版2019),文件包含33幂函数九种常考题型原卷版docx、33幂函数九种常考题型解析版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
这是一份3.2.2 奇偶性( 六种常考题型)- 【初升高衔接】2024年新高一数学暑假衔接知识回顾与新课预习(人教A版2019),文件包含322奇偶性六种常考题型原卷版docx、322奇偶性六种常考题型解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份3.2.1 单调性与最大(小)值( 种常考题型)-【初升高衔接】2024年新高一数学暑假衔接知识回顾与新课预习(人教A版2019),文件包含321单调性与最大小值八种常考题型原卷版docx、321单调性与最大小值八种常考题型解析版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。