搜索
    上传资料 赚现金
    (人教版)初升高数学暑假衔接高一预习-3.4 函数的应用(一)(学生版+教师版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      (人教版)初升高数学暑假衔接高一预习-3.4 函数的应用(一)(教师版) .docx
    • 学生
      (人教版)初升高数学暑假衔接高一预习-3.4 函数的应用(一)(学生版) .docx
    (人教版)初升高数学暑假衔接高一预习-3.4 函数的应用(一)(学生版+教师版)01
    (人教版)初升高数学暑假衔接高一预习-3.4 函数的应用(一)(学生版+教师版)02
    (人教版)初升高数学暑假衔接高一预习-3.4 函数的应用(一)(学生版+教师版)03
    (人教版)初升高数学暑假衔接高一预习-3.4 函数的应用(一)(学生版+教师版)01
    (人教版)初升高数学暑假衔接高一预习-3.4 函数的应用(一)(学生版+教师版)02
    (人教版)初升高数学暑假衔接高一预习-3.4 函数的应用(一)(学生版+教师版)03
    还剩22页未读, 继续阅读
    下载需要35学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (人教版)初升高数学暑假衔接高一预习-3.4 函数的应用(一)(学生版+教师版)

    展开
    这是一份(人教版)初升高数学暑假衔接高一预习-3.4 函数的应用(一)(学生版+教师版),文件包含人教版初升高数学暑假衔接高一预习-34函数的应用一教师版docx、人教版初升高数学暑假衔接高一预习-34函数的应用一学生版docx等2份学案配套教学资源,其中学案共37页, 欢迎下载使用。

    知识点一 一次函数模型
    形如y=kx+b的函数为一次函数模型,其中k≠0.
    知识点二 二次函数模型
    1.一般式:y=ax2+bx+c(a≠0).
    2.顶点式:y=a(x-h)2+k(a≠0).
    3.两点式:y=a(x-m)(x-n)(a≠0).
    知识点三 幂函数模型
    1.解析式:y=axα+b(a,b,α为常数,a≠0).
    2.单调性:其增长情况由xα中的α的取值而定.
    【基础自测】
    1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )

    2.某厂日产手套总成本y(元)与手套日产量x(副)的函数解析式为y=5x+4 000,而手套出厂价格为每副10元,
    则该厂为了不亏本,日产手套至少为( )
    A.200副 B.400副 C.600副 D.800副
    3.(多选)某商品A以每件2元的价格出售时,销售量为10万件.经过调查,单价每提高0.2元,销售量减少5000件,要使商品A销售总收入不少于22.4万元,该商品A的单价可定为( )
    A.2.6元B.2.8元C.3元D.3.2元
    4.用长度为24 m的材料围成一矩形场地,并且中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为______ m.
    5.甲同学家到乙同学家的途中有一公园,甲同学家到公园的距离与乙同学家到公园的距离都是2 km.如图表示甲同学从家出发到乙同学家经过的路程y(km)与时间x(min)的关系,其中甲在公园休息的时间是10 min,那么y=f(x)的解析式为________________.
    【例题详解】
    一、二次函数模型
    例1 一公司某年用128万元购进一台生产设备,使用年后需要的维护费总计万元,该设备每年创造利润54万元.
    (1)求使用设备生产多少年,总利润最大,最大是多少?
    (2)求使用设备生产多少年,年平均利润最大,最大是多少?
    跟踪训练1 目前脱贫攻坚进入决胜的关键阶段,某扶贫企业为了增加工作岗位和增加员工收入,决定投入90万元再上一套生产设备,预计使用该设备后前年的支出成本为万元,每年的销售收入95万元.
    (1)估计该设备从第几年开始实现总盈利;
    (2)使用若干年后对该设备处理的方案有两种:
    方案一:当总盈利额达到最大值时,该设备以20万元的价格处理;
    方案二:当年平均盈利额达到最大值时,该设备以60万元的价格处理;
    问哪种方案较为合理?并说明理由.
    二、分段函数模型
    例2 双碳战略之下,新能源汽车发展成为乘用车市场转型升级的重要方向.根据工信部最新数据显示,截至2022年一季度,我国新能源汽车已累计推广突破1000万辆大关.某企业计划引进新能源汽车生产设备,通过市场分析,每生产(千辆)获利(万元),,该公司预计2022年全年其他成本总投入为万元.由市场调研知,该种车销路畅通,供不应求.记2022年的全年利润为(单位:万元).
    (1)求函数的解析式;
    (2)当2022年产量为多少千辆时,该企业利润最大?最大利润是多少?
    跟踪训练2 某电影院每天最多可制作500桶爆米花,每桶售价相同,根据影院的经营经验,当每桶售价不超过20元时,当天可售出500桶;当每桶售价高于20元时,售价每高出1元,当天就少售出20桶.已知每桶爆米花的成本是4元,设每桶爆米花的售价为(且)元,该电影院一天出售爆米花所获利润为元.(总收入=总成本+利润)
    (1)求关于的函数表达式;
    (2)试问每桶爆米花的售价定为多少元时,该电影院一天出售爆米花所获利润最大?最大利润为多少元?
    三、幂函数模型
    例3 某企业计划投资生产甲、乙两种产品,根据长期收益率市场预测,投资生产甲产品的利润与投资额成正比,投资生产乙产品的利润与投资额的算术平方根成正比,已知投资1万元时,甲、乙两类产品的利润分别为0.125万元和0.5万元.
    (1)分别写出两类产品的利润与投资额的函数关系式;
    (2)该企业有100万元资金,全部用于生产甲、乙产品,问怎样分配资金能使得利润之和最大,最大利润为多少万元?
    跟踪训练3 美国对中国芯片的技术封锁,激发了中国“芯”的研究热潮.某公司研发的,两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图像如图所示.

    (1)试分别求出生产,两种芯片的毛收入(千万元)与投入的资金(千万元)的函数关系式;
    (2)如果公司只生产一种芯片,生产哪种芯片毛收入更大?
    (3)现在公司准备投入4亿元资金同时生产,两种芯片.设投入千万元生产芯片,用表示公司所获利润,当为多少时,可以获得最大利润?并求最大利润.(利润芯片毛收入芯片毛收入-发耗费资金)
    【课堂巩固】
    1.下面是一幅统计图,根据此图得到的以下说法中,正确的个数是( )
    ①这几年生活水平逐年得到提高;
    ②生活费收入指数增长最快的一年是2014年;
    ③生活价格指数上涨速度最快的一年是2015年;
    ④虽然2016年生活费收入增长缓慢,但生活价格指数也略有降低,因而生活水平有较大的改善.
    A.1 B.2 C.3 D.4
    2.如图所示,是边长为2的等边三角形,直线截这个三角形位于此直线左方的图形面积为y(见图中阴影部分),则函数的大致图像为( )
    A. B. C. D.
    3.如图所示,液体从一个圆锥形漏斗漏入一个圆柱形桶中,开始时漏斗中盛满液体,经过3秒漏完,圆柱形桶中液面上升速度是一个常量,则漏斗中液面下降的高度H与下降时间t之间的函数关系的图象只可能是( )
    A. B.C. D.
    4.某小型服装厂生产一种风衣,日销售量x(件)与单价P(元)之间的关系为,生产x件所需成本为C(元),其中,若要求每天获利不少于1300元,则日销量x的取值范围是( )
    A.,B.,
    C.,D.,
    5.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”,计费方法如下:
    若某户居民本月交纳的水费为65元,则此户居民本月用水量为( )
    A.B.C.D.
    6.“空气质量指数()”是定量描述空气质量状况的无量纲指数.当大于200时,表示空气重度污染,不宜开展户外活动.某地某天0~24时的空气质量指数随时间变化的趋势由函数描述,则该天适宜开展户外活动的时长至多为( )
    A.5小时B.6小时C.7小时D.8小时
    7.某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润(单位:10万元)与营运年数为二次函数关系(如图所示),则每辆客车营运( )年时,其营运的年平均利润最大.
    A.3B.4C.5D.6
    8.某厂有许多形状为直角梯形的铁皮边角料,如图所示,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形的两边长x,y应分别为________.
    9.某市出租车收费标准如下:起步价为8元,起步里程为3千米(不超过3千米按起步价付费);超过3千米但不超过8千米时,超过部分按每千米2.15元收费;超过8千米时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.若某人乘坐出租车行驶了5.6千米,则需付车费________元,若某人乘坐一次出租车付费22.6元,则此出租车行驶了________千米.
    10.有长的篱笆材料,如果利用已有的一面墙设长度够用作为一边,围成一块矩形菜地,问矩形的长、宽各为多少时,这块菜地的面积最大
    11.某家庭进行网上理财投资,根据长期收益率市场预测,投资债券等稳健型产品的年收益与投资额成正比,投资股票等风险型产品的年收益与投资额的算术平方根成正比.已知投资1万元时两类产品的年收益分别为0.125万元和0.5万元(如图).
    (1)分别写出两种产品的年收益与投资的函数关系式;
    (2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?
    12.手机上网每月使用量在500分钟以下(包括500分钟)、60分钟以上(不包括60分钟)按30元计费,超过500分钟的部分按0.15元/分钟计费,假如上网时间过短,使用量在1分钟以下不计费,在1分钟以上(包括1分钟)按0.5元/分钟计费,手机上网不收通话费和漫游费.
    ①12月份小王手机上网使用量20小时,要付多少钱?
    ②小舟10月份付了90元的手机上网费,那么他上网时间是多少?
    ③电脑上网费包月60元/月,根据时间长短,你会选择哪种方式上网呢?
    【课时作业】
    1.在线直播带货已经成为一种重要销售方式,假设直播在线购买人数y(单位;人)与某产品销售单价x(单位:元)满足关系式:,其中20A.实数m的值为10000B.销售单价越低,直播在线购买人数越多
    C.当x的值为30时利润最大D.利润最大值为10000
    2.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:
    有一职工八月份收入20000元,该职工八月份应缴纳个税为( )
    A.2000元B.1500元C.990元D.1590元
    3.将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价(元/个)的取值范围应是( )
    A.B.C.D.
    4.为配制一种药液,进行了二次稀释,先在容积为40L的桶中盛满纯药液,第一次将桶中药液倒出用水补满,搅拌均匀,第二次倒出后用水补满,若第二次稀释后桶中药液含量不超过容积的60%,则V的最小值为( )
    A.5B.10C.15D.20
    5.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为( )m.
    A.400B.12C.20D.30
    6.在2 h内将某种药物注射进患者的血液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减.下面能反映血液中药物含量Q随时间t变化的图象是( )
    A.B.
    C.D.
    7.如图一直角墙角,两边的长度足够长,P处有一棵树与两墙的距离分别是am、4 m,其中,不考虑树的粗细,现在想用16m长的篱笆,借助墙角围成一个矩形的花圃ABCD,设此矩形花圃的最大面积为S(单位:),若将这棵树围在花圃内,则函数的图象大致是( )
    A.B.C.D.
    8.已知某商品的进货成本为10(元/件),经过长时间调研,发现售价x(元)与月销售量y(件)满足函数关系式.为了获得最大利润,商品售价应为( )
    A.80元B.60元C.50元D.40元
    9.某商场以每件30元的价格购进一种商品,根据销售经验,这种商品每天的销量m(件)与售价x(元)满足一次函数,若要每天获得最大的销售利润,则每件商品的售价应定为___________元.
    10.长为5、宽为4的矩形,当长增加x,且宽减少时面积最大,此时x=___________,最大面积S=___________.
    11.某工厂生产某种零件的固定成本为20000元,每生产一个零件要增加投入100元,已知总收入Q(单位:元)关于产量x(单位:个)满足函数:.
    (1)将利润P(单位:元)表示为产量x的函数;(总收入=总成本+利润)
    (2)当产量为何值时,零件的利润最大?最大利润是多少元?
    (3)当产量为何值时,零件的单位利润最大?最大单位利润是多少元?
    12.销售甲、乙两种商品所得利润分别是万元,它们与投入资金万元的关系分别为,(其中都为常数),函数对应的曲线如图所示.
    (1)求函数与的解析式;
    (2)若该商场一共投资10万元经销甲、乙两种商品,求该商场所获利润的最大值.
    13.要建造一面靠墙、且面积相同的两间相邻的长方形居室(靠墙一侧利用原有墙体),如图所示.如果已有材料可建成的围墙总长度为,那么当宽x(单位:m)为多少时,才能使所建造的居室总面积最大?居室的最大总面积是多少?(不考虑墙体厚度)
    14.共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,据市场分析,每辆单车的营运累计利润y(单位:元)与营运天数x()满足函数关系式.
    (1)要使营运累计利润高于800元,求营运天数的取值范围;
    (2)每辆单车营运多少天时,才能使每天的平均营运利润的值最大?
    15.牧场中羊群的最大蓄养量为m只,为保证羊群的生长空间,实际蓄养量不能达到最大蓄养量,必须留出适当的空闲率.已知羊群的年增长量y只和实际蓄养量x只与空闲率的乘积成正比,比例系数为k(k>0).(空闲率指空闲量与最大蓄养量的比值)
    (1)写出y关于x的函数关系式,并指出这个函数的定义域;
    (2)求羊群年增长量的最大值;
    (3)当羊群的年增长量达到最大值时,求k的取值范围.
    每户每月用水量
    水价
    不超过的部分
    2.5元
    超过但不超过的部分
    5元
    超过的部分
    7.5元
    全月应纳税所得额
    税率
    不超过3000元的部分
    超过3000元至12000元的部分
    超过12000元至25000元的部分
    相关学案

    (人教版)初升高数学暑假衔接高一预习-5.7 三角函数的应用(学生版+教师版): 这是一份(人教版)初升高数学暑假衔接高一预习-5.7 三角函数的应用(学生版+教师版),文件包含人教版初升高数学暑假衔接高一预习-57三角函数的应用教师版docx、人教版初升高数学暑假衔接高一预习-57三角函数的应用学生版docx等2份学案配套教学资源,其中学案共64页, 欢迎下载使用。

    (人教版)初升高数学暑假衔接高一预习-4.5 函数的应用(学生版+教师版): 这是一份(人教版)初升高数学暑假衔接高一预习-4.5 函数的应用(学生版+教师版),文件包含人教版初升高数学暑假衔接高一预习-45函数的应用教师版docx、人教版初升高数学暑假衔接高一预习-45函数的应用学生版docx等2份学案配套教学资源,其中学案共49页, 欢迎下载使用。

    (人教版)初升高数学暑假衔接高一预习-4.3 对数(学生版+教师版): 这是一份(人教版)初升高数学暑假衔接高一预习-4.3 对数(学生版+教师版),文件包含人教版初升高数学暑假衔接高一预习-43对数教师版docx、人教版初升高数学暑假衔接高一预习-43对数学生版docx等2份学案配套教学资源,其中学案共34页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (人教版)初升高数学暑假衔接高一预习-3.4 函数的应用(一)(学生版+教师版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map